Comparative Modeling and Loop Building in Rosetta 3.2

Outline

- Introduction to comparative modeling
- General comparative modeling protocol
- Comparative modeling in Rosetta 3.2
- Loop building in Rosetta 3.2: CCD vs. KIC
- Clustering output models
- Analyzing results
- Modeling membrane proteins
- Useful references and websites

Introduction to Comparative Modeling

Target

MKIVYWSGTGNTERMA IAKGIIESGKDVNTI NVSDVNIDELLNEDIL GCSAMGDEVLEESEF EPFIEEISTKISGKE ALFGSYGWGDGKWMRDF EERMNGYGCVVVETPIVQNEPDEAEQDCIEFG KKIANI

Comparative Modeling: construction of an atomic-resolution model of a protein with no experimentally determined structure using the 3D structure of a related protein Homology Modeling: modeling a protein based on a template with common evolutionary origin

Threading: placing amino acids of the target sequence onto the coordinates of the template structure

Application of Models

- Predict structure-function relationships
- Predict binding pockets for ligands for structure-based drug design
- Suggest site-directed mutagenesis experiments

Show Threading Video

Identifying Template Structures

Target

MKIVYWSGTGNTERMA IAKGIIESGKDVNTI NVSDVNIDELLNEDIL GCSAMGDEVLEESEF EPFIEEISTKISGKE ALFGSYGWGDGKWMRDF EERMNGYGCVVVETPIVQNEPDEAEQDCIEFG KKIANI

Identifying a Suitable Template:

Templates should ideally have >30% sequence identity to the target. There are two approaches to identifying templates:

- **1. Sequence Similarity:** comparing proteins based on amino acid properties alone (BLAST, PSI-BLAST)
- **2. Fold Recognition:** using predicted secondary structure information to detect proteins with similar 3D characteristics (DALI, PHYRE)

- Step 1: Align target sequence with sequence of template structure
- **Step 2:** Thread the target sequence onto the backbone of the template structure
- Step 3: Rebuild the loop regions of the model
- Step 4: Full-atom refinement of the model
- **Step 5:** Cluster models and analyze your results

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE 1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

- **Step 1:** Align target sequence with sequence of template structure
- Step 2: Thread the target sequence onto the backbone of the template structure
- Step 3: Rebuild the loop regions of the model
- Step 4: Full-atom refinement of the model
- **Step 5:** Cluster models and analyze your results

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE 1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

- **Step 1:** Align target sequence with sequence of template structure
- **Step 2:** Thread the target sequence onto the backbone of the template structure
- Step 3: Rebuild the loop regions of the model
- Step 4: Full-atom refinement of the model
- **Step 5:** Cluster models and analyze your results

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE 1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

with loops

- **Step 1:** Align target sequence with sequence of template structure
- **Step 2:** Thread the target sequence onto the backbone of the template structure
- **Step 3:** Rebuild the loop regions of the model
- Step 4: Full-atom refinement of the model
- **Step 5:** Cluster models and analyze your results

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE 1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

with loops

- **Step 1:** Align target sequence with sequence of template structure
- Step 2: Thread the target sequence onto the backbone of the template structure
- Step 3: Rebuild the loop regions of the model
- Step 4: Full-atom refinement of the model
- Step 5: Cluster models and analyze your results

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE 1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

Rosetta 3.2 Threading Protocol

Inputs

- Target sequence (2foxA)
- 2. Template PDB (1f4pA)
- 3. Fragment files
- 4. Alignment of target and template sequences
- 5. Optional: Secondary structure file

Output

 Silent file containing models and corresponding scores

1: Target sequence

Find this file at \$WORKSHOP_ROOT/tutorials/modeling/input_model/2foxA.fasta

>2 foxA

MKIVYWSGTGNTEKMAELIAKGIIESGKDVNTINVSDVNIDELLNEDILILGCSAMG DEVLEESEFEPFIEEISTKISGKKVALFGSYGWGDGKWMRDFEERMNGYGCVVVETP LIVQNEPDEAEQDCIEFGKKIANI

2: Template PDB

Find this file at \$WORKSHOP_ROOT/tutorials/modeling/input_model/1f4pA.pdb

3: Fragments

Find these files at \$WORKSHOP_ROOT/tutorials/modeling/input_model/aa2foxA03_05.200_v1_3 and \$WORKSHOP_ROOT/tutorials/modeling/input_model/aa2foxA09_05.200_v1_3

ROBETTA BETA Full-chain Protein Structure Prediction Server	www.bakerlab.org
Structure Prediction Fragment Libraries Alanine Scanning [Queue][Submit] [Queue][Submit] [Queue][Submit] [Register / Update][Docs / FAQs][Login]	
Submit a job to the Fragment Server *Please submit one job at a time	
Required Registered Username: or Registered Email Address:	
Target Name: Paste Fasta	
or Upload <u>Fasta</u> : <u>Choose File</u> No file chosen	http://robet

Submit

http://robetta.bakerlab.org/
fragmentsubmit.jsp

4: Alignment

Find this file at \$WORKSHOP_ROOT/tutorials/modeling/input_model/2foxA.1f4pA.aln

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE

1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

Multiple Sequence Alignment by CLUSTALW

CLUSTALW	MAFFT	PRRN	
General Setting Parameters: Output Format: CLUSTAL	•		lelp
Enter your sequences (with labels	APPROXIMATE SLOW/ACC) below (copy & paste): PR		
Support Formats: FASTA (Pear	son), NBRF/PIR, EMBL/Swiss Pro	t, GDE, CLUSTAL, and GCG/MS	F
Or give the file name containing you	our query	//	
Choose File No file chosen	ou. query		_
Execute Multiple Alignment Res	et		<u>h</u>

5: PSIPRED

Find this file at \$WORKSHOP_ROOT/tutorials/modeling/input_model/2foxA.psipred_ss2

The PSIPRED Protein Structure Prediction Server

The PSIPRED Protein Structure Prediction Server aggregates several of our structure prediction methods into one location. Users can submit a protein sequence, perform the prediction of their choice and receive the results of the prediction via e-mail. You may select one of three prediction methods to apply to your sequence:

PSIPRED - a highly accurate method for protein secondary structure prediction

MEMSAT and MEMSAT-SVM - our widely used transmembrane topology prediction method
and one of Genthreader, pGenthreader and pDomthreader - sequence profile based fold recognition methods. More...

For queries regarding PSIPRED: psipred@cs.ucl.ac.uk

Choose Prediction Method

- Predict Secondary Structure (PSIPRED v3.0)
- Predict Transmembrane Topology (MEMSAT3 & MEMSAT-SVM)
- SVM Prediction of TM Topology and Helix Packing (MEMPACK) NEW!
- Fold Recognition (GenTHREADER quick)
- © Fold Recognition (pGenTHREADER with profiles and predicted secondary structure)
- Fold Recognition (pDomTHREADER annotates multiple domain on chains)

Help...

Input Sequence (single letter amino acid code)

http://bioinf.cs.ucl.ac.uk/psipred/

Options: Input

Find this file at
\$WORKSHOP_ROOT/tutorials/modeling/input_model/comparative_model.options
-run:protocol threading #call threading protocol

-in:file:fasta *.fasta #target sequence
-in:file:template_pdb *.pdb #template structure
-in:file:fullatom #input will be fullatom
-in:file:psipred_ss2 *.psipred_ss2 #optional: psipred secondary structure

-in:file:alignment *.aln #input alignment

Options: Loop Building (CCD)

-loops:frag_sizes 9 3 1 #sizes of fragments
-loops:frag_files <fragment files> #fragment files
-loops:remodel quick_ccd #use ccd to remodel loops
-idealize_after_loop_close #idealize structure after closing
loops (structure will have ideal rosetta bond lengths and
angles)
-loops:extended true #force extended on loops (phi-psi angles
set to 180 degrees) independent of loop input file. for
rebuilding loops entirely.
-loops:build_initial true #precede loop modeling with initial
round of removing missing densities and building simple loops

-loops:relax fastrelax #fastrelax loops (5 cycles at default)

rebuild

-cm:min loop size <int> #minimum size of loops to consider for

Options: Output

```
-out:nstruct <int> #number of models to build
-out:file:silent_struct_type binary #output file type
-out:file:silent *.out #output file name
-out:file:fullatom #output file will be fullatom
```

Running Rosetta

```
$ROSETTA_BIN/minirosetta.$ROSETTA_SUFFIX
@$WORKSHOP_ROOT/tutorials/modeling/input_model/comparative
_model.options -database $ROSETTA_DATABASE >&
$WORKSHOP_ROOT/tutorials/modeling/comparative_model.log &
```

Behind the Rosetta 3.2 Threading Protocol

- **Step 1:** Align target sequence with sequence of template structure
- Step 2: Thread the target sequence onto the backbone of the template structure
- Step 3: Rebuild the loop regions of the model
- Step 4: Full-atom refinement of the model
- Step 5: Cluster models and analyze your results

2foxA 1 --MKIVYWSGTGNTEKMAELIAKGIIE 1f4pA 1 PKALIVYGSTTGNTEYTAETIARELAD

2foxA model with loops

Why Loop Building is Important

Sequence alignments in comparative modeling result in insertions & deletions

Loops can play an important role in ligand & peptide binding sites

Comparing Loop Building Methods

	Cyclic Coordinate Descent (CCD)	Kinematic Loop Closure (KIC)
Speed	*	
Accuracy in recovering crystal structures		*
Accuracy in homology modeling	*	

Stage 1: Remodel (CCD or KIC)

fast, broad sampling of backbone conformations, centroid

Stage 2: Refine (KIC)

side-chains are represented in all-atom detail, and together with backbone conformations, evaluated by Rosetta's high-resolution scoring function.

Rosetta 3.2 Loop Building Protocol

Inputs

- Loop File
- Model PDB with or without loop coordinates

CCD Only

3. Fragment files

Output

 Silent file containing models and corresponding scores

1: Loop File

Find this file at \$WORKSHOP_ROOT/tutorials/modeling/input_loop/2foxA.loops

LOOP 6 11 0 0 0

Column 1	LOOP	The loop file identity tag
Column 2	<integer></integer>	Residue number for starting loop anchor. NOTE: The starting structure must have real coordinates for all residues outside the loop definition, including the loop anchors (residues indicated in the loops file).
Column 3	<integer></integer>	Residue number for ending loop anchor
Column 4	<integer></integer>	Cut point residue number, >=startRes, <=endRes. default - let LoopRebuild choose cutpoint
Column 5	<float></float>	Skip rate (probability between 0 and 1). default - never skip
Column 6	<boolean></boolean>	Extend loop. Default false

Differences for KIC:

• For de novo reconstruction of protein loops, set 'extend loop' field in the loop definition file (the last column) to '1'.

2: PDB without loop coordinates

Find this file at \$\\$WORKSHOP_ROOT/tutorials/modeling/input_loop/2foxA_no_loops.pdb

If you want to completely rebuild your loops, set the loop coordinates of your PDB file to zero with the following script:

```
$WORKSHOP_ROOT/py_protein_utils/scripts/remove_loop_coords.py
2foxA.loops 2foxA_start_model.pdb 2foxA_no_loops.pdb
```

The script sets loop x-y-z coordinates (as defined by your loop file) to 0.000 and the occupancy column to -1.00, as below:

ATOM	2253	СВ	PHE	Α	231	0.000	0.000	0.000 -1.00	0.00	С
MOTA	2254	CG	PHE	A	231	0.000	0.000	0.000 -1.00	0.00	С
MOTA	2255	CD1	PHE	A	231	0.000	0.000	0.000 -1.00	0.00	С
MOTA	2256	CD2	PHE	A	231	0.000	0.000	0.000 -1.00	0.00	С
MOTA	2257	CE1	PHE	Α	231	0.000	0.000	0.000 -1.00	0.00	С

Setting up CCD versus KIC

Find these files at \$WORKSHOP_ROOT/tutorials/modeling/input_loop/kic.options and \$WORKSHOP_ROOT/tutorials/modeling/input_loop/ccd.options

Common Options

```
-nstruct <int> #number of models to build. 1000 recommended for
production runs.
-loops:input_pdb *.pdb #starting pdb with loops to rebuild
-loops:loop_file *.loops #loop file
-loops:relax fastrelax #does a minimization of the structure in the
torsion space
-loops:extended #force phi-psi angles to be set to 180 degrees
independent of loop input file (recommended for production runs)
-out:file:silent_struct_type binary #output file type
-out:file:silent *.out #output file name
-out:file:fullatom #output file will be fullatom
```

Options for CCD

-loops:frag_sizes 9 3 1

```
-loops:frag_files <fragment files>
-loops:remodel quick_ccd
-loops:refine refine kic
```

Options for KIC

```
-loops:remodel perturb_kic
-loops:refine refine_kic
-ex1 #Include extra chil rotamers
-ex2
```

Running Rosetta

```
$ROSETTA_BIN/loopmodel.$ROSETTA_SUFFIX
@$WORKSHOP_ROOT/tutorials/modeling/input_loop/ccd.options
-database $ROSETTA_DATABASE >& $WORKSHOP_ROOT/
tutorials/modeling/ccd.log &

$ROSETTA_BIN/loopmodel.$ROSETTA_SUFFIX
@$WORKSHOP_ROOT/tutorials/modeling/input_loop/kic.options
-database $ROSETTA_DATABASE >& $WORKSHOP_ROOT/
tutorials/modeling/kic.log &
```

(Clustering in Rosetta)

- The Rosetta clustering algorithm is slightly unconventional
- Traditional clustering methods require the calculation of a pairwise distance matrix
 - The memory requirements of this method are n²
 where n is the number of models being clustered
 - For large numbers of models, these methods are therefore impractical

(Clustering In Rosetta)

(Clustering In Rosetta)

(Clustering In Rosetta)

Clustering: Options

Find this file at \$WORKSHOP_ROOT/tutorials/modeling/input_cluster/cluster.options

- -in:file:fullatom #Read as fullatom input structure
 -out:file:silent #Output silent structures instead of
 PDBs
- -run:shuffle #Use shuffle mode
- -cluster:radius <float> #Cluster radius in A for RMS clustering or in inverse GDT_TS for Global Distance Test score clustering. Use "-1" to trigger automatic radius detection
- -cluster:exclude_res <int> [<int> <int> ..] #Exclude
 residue numbers from structural comparisons

Clustering: Running

Before running the cluster application, combine all your silent files:

```
$ROSETTA_BIN/combine_silent.$ROSETTA_SUFFIX
-database $ROSETTA_DATABASE
-in:file:silent *.out
-in:file:silent_struct_type binary
-out:file:silent_cluster_all.out
-out:file:silent_struct_type binary
```

The clustering python script runs the Rosetta application and outputs summary files:

```
python $WORKSHOP_ROOT/py_protein_utils/scripts/clustering.py
--silent=cluster_all.out
--rosetta=$ROSETTA_BIN/cluster.$ROSETTA_SUFFIX
--database=$ROSETTA_DATABASE
--options=cluster.options
cluster summary.txt cluster histogram.txt
```

Clustering: Results

cluster number (random) model number, sorted by energy

Tag	file_name	score size	
S_1F4PA_0410_1	c.0.0.pdb	-267.131	203
S_1F4PA_0356_1	c.6.0.pdb	-252.855	40
S_1F4PA_0036	c.22.0.pdb	-248.465	29
S_1F4PA_0127_1	c.13.0.pdb	-251.634	24
S_1F4PA_0116_1	c.14.0.pdb	-251.295	24
S_1F4PA_0281	c.25.0.pdb	-248.026	24
S_1F4PA_0162	c.29.0.pdb	-245.988	20
S_1F4PA_01 C7_1	2 0 pdb.	257.10	17
S_1F4PA_02	200		17
S_1F4PA_00	Mar /	Marie Contraction	16
S_1F4PA_03		and the second s	14
S_1F4PA_04	The Contraction of the		13
S_1F4PA_00			13
S_1F4PA_02 ~~			13
		c.0.203	
	$\sqrt{}$ N $\sqrt{}$	V	
	c.0.0		

Analyze Your Results: See Workshop 1

- Generating Score vs. RMSD Plots
- Extracting and Looking at Models
- Looking at Models in PyMol
- Looking at RMSD Distributions

Results of Comparative Modeling Protocol

2foxA native structure

1f4pA template structure

2foxA model

RMSD of 2foxA model (c.0.0) to 2foxA native structure:

1.376 Angstroms

RMSD of 2foxA model (c.0.0) to 1f4pA template:

1.312 Angstroms

Comparative Modeling of Membrane Proteins

*this protocol is not yet benchmarked, use with caution

- Generate LIPS and spanfile (see workshop 1)
- Add the following options to the options file:

```
-in:file:spanfile *.span # newly created spanfile
-in:file:lipofile *.lips4 # newly created lipo file
-membrane:no_interpolate_Mpair # membrane scoring specification
-membrane:Menv_penalties # turn on membrane penalty scores
-score:weights membrane_highres_Menv_smooth.wts
```

Run protocol as before

It's Your Turn!

Three stand-alone tutorials are included in your worksheet:

- Comparative Modeling
- Loop Building (CCD and KIC)
- Clustering

Tips:

- BLUE text means that these files and/or this information is provided.
- RED text means that this material will NOT be conducted during the workshop
- Change all environment variables (anything starting with a \$) to your local paths
- If you want to try making files that already exist (e.g., input files), write them to a new directory!
- See Tutorial 1 (De Novo Folding) for more details on analyzing your results.

References

Rosetta 3.2 User Guide

http://www.rosettacommons.org/manuals/archive/rosetta3.2_user_guide/comparative_modeling.html

Comparative Modeling

http://www.rosettacommons.org/manuals/archive/rosetta3.2_user_guide/comparative_modeling.html

Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., et al. (2009). Structure prediction for CASP8 with all-atom refinement using Rosetta. *Proteins*, *77 Suppl 9*, 89-99.

Loop Building

http://www.rosettacommons.org/manuals/archive/rosetta3.2_user_guide/ccd_loop_modeling.html

Wang, C., Bradley, P., & Baker, D. (2007). Protein-Protein Docking with Backbone Flexibility. *Journal of Molecular Biology*, 373(2), 503-519.

Mandell, D. J., Coutsias, E. A., & Kortemme, T. (2009). Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. *Nat Meth*, 6(8), 551-552.

Clustering

http://www.rosettacommons.org/manuals/archive/rosetta3.2_user_guide/cluster_commands.html

Modeling Membrane Proteins

http://www.rosettacommons.org/manuals/archive/rosetta3.2 user guide/membrane abinitio.html