
Tutorial 5: Alchemical structure-based design simulation of type I and II kinase inhibitors 
Author: Benjamin P. Brown (benjamin.p.brown17@gmail.com) 
Date: 01-2022 
 
Background 
Protein kinases are signaling enzymes that catalyze the transfer of phosphate from ATP to 
protein/peptide substrate. A typical reaction is of the scheme ATP + Peptide -> ADP + Peptide-P: 
 

 
 
The phosphorylated substrate is frequently an “activated” form of the downstream protein that 
propagates the signal that activated the kinase. Kinases may be activated by extracellular binding of 
growth factors to promote cell growth and division. Thus, oncogenic kinases promote carcinogenesis 
through aberrant signaling activity.  
 
A common strategy to treat cancers caused by overactive kinases is to prevent binding of ATP and 
subsequent substrate phosphorylation with ATP-competitive small molecule inhibitors. In this tutorial, 
we will use a new multifaceted Rosetta mover called BCLFragmentMutateMover to perform 

structure-based design of small molecule inhibitors of Abl kinase. BCLFragmentMutateMover is 

an implementation of the FragmentMutateInterface framework in the BCL and at the time of 
writing represents the primary functional connection at the BCL-Rosetta interface. 
 
An important note about the intended functionality of the BCLFragmentMutateMover is that it was 
built to try and retain information about the binding pose of the ligand as the ligand is chemically 
perturbed. The idea here is that we want to avoid a global redocking of the ligand if we can because 
docking is expensive and not without error. Therefore, the BCL mutates attempt to preserve coordinate 
information as the design process is ongoing, and Rosetta refines the protein-ligand interaction space as 
needed with help from other algorithms (e.g., FastRelax). If you do want to redock after each round 

of design, this is perfectly fine and it can easily be done using standard RosettaLigand after chemical 
structure perturbation. 
 
  



Part 1: Preparing a small molecule scaffold for design 
In contrast to the reaction-based design approach in Tutorial #4, most* applications of the 
BCLFragmentMutateMover require a starting scaffold. One way in which a pipeline may proceed is 
to perform de novo reaction-based design as in Tutorial #4 and a second round of focused design on the 
most promising hits using the BCLFragmentMutateMover. For the purposes of this tutorial, we will 
start with a kinase inhibitor scaffold designed by Okram et al.1. The scaffold consists of an amino-
substituted pyridopyrimidine heterocycle connected to a benzene ring.  
 
This scaffold is interesting because it can support derivatization into either type I or type II inhibitors. 
Note that it contains a canonical hinge-binding motif, which is a set of 1-2 hydrogen bonds that mimic 
the hydrogen bond made by ATP in the binding pocket. 
 

 
Figure 1. Illustration of the Abl kinase domain hinge region in complex with an ATP mimetic. Structure obtained from PDB ID 
2G2F2. 

 
All right, before we get started, it will make your life easier if you set the path to your Rosetta directory 
as an environment variable. For example, the Rosetta directory is pre-installed in the Meiler Lab at 
/sb/apps/bcl/Rosetta/main. In bash, we can set this as an environment variable by doing the 

following: 
 

 
In tcsh, this is accomplished with a similar command: 
 

 
Alternatively, feel free to modify your PATH and LD_LIBRARY_PATH variables. Throughout the remainder 
of the tutorial, we will assume that the environment variable ROSETTA has been set as described for 
simplicity. Assume the same for an equivalent BCL environment variable. 
 
The first step in preparing our scaffold is to generate a Rosetta params file from a valid MDL SD file. 
Recall from first tutorial that we can check to make sure our scaffold meets some basic quality control 
criteria before continuing with it.  

export ROSETTA=/sb/apps/bcl/Rosetta/main 

setenv ROSETTA “/sb/apps/bcl/Rosetta/main” 



 
Navigate to the BCL_Workshop_2022/Tutorial_5/inputs/ligands directory. 
 

 
Run molecule:Filter on the starting molecule that I manually pulled from the crystallographic 
structures published in Okram et al.1: 
 

 
Next, generate the Rosetta params file with the following command: 
 

 
You should see the following message: 
 

 
A few notes: 
 

1. The specification of the root atom during params generation is arbitrary. I just specified 
root_atom because it can influence atom indexing and this is important in a little bit. 

 
2. This is the only time during the drug design process that we will need to make a params file. 

Throughout the remainder of this exercise, all newly designed molecules will be parameterized 

cd BCL_Workshop_2022/Tutorial_5/inputs/ligands 

bcl.exe molecule:Filter \ 

-input_filenames starting_mol.raw.sdf \ 

-output_matched LIG.sdf \ 

-defined_atom_types \ 

-3d \ 

-add_h \ 

-neutralize 

${ROSETTA}/source/scripts/python/public/molfile_to_params.py \ 

-n LIG -p LIG LIG.sdf --root_atom=1 --centroid --extra_torsion_output  

Centering ligands at (  18.095,   15.216,    4.160) 

Atom names contain duplications -- renaming all atoms. 

WARNING:  structure contains double bonds but no aromatic bonds 

  Aromatic bonds must be identified explicitly -- 

  alternating single/double bonds (Kekule structure) won't cut it. 

  This warning does not apply to you if your molecule really isn't 

aromatic. 

Total naive charge -1.690, desired charge 0.000, offsetting all atoms 

by 0.055 

WARNING: fragment 1 has 31 total atoms including H; protein residues 

have 7 - 24 (DNA: 33) 

Average 31.0 atoms (19.0 non-H atoms) per fragment 

(Proteins average 15.5 atoms (7.8 non-H atoms) per residue) 

Wrote PDB file LIG_0001.fa.pdb 

Wrote params file LIG.fa.params 

Wrote PDB file LIG_0001.cen.pdb 

Wrote params file LIG.cen.params 



automatically internally. We need this params file strictly to load the small molecule into 
Rosetta. 

 
3. For small molecule docking, it may be beneficial to explicitly declare aromatic bonds instead of 

the Kekulized (alternating single/double bonds) structure. Recall that this can be achieved in 
most BCL applications by simply passing the explicit_aromaticity flag. This will cause 

aromatic substructures in the output SDF to have bond orders of 4 (indicating aromatic). 
 

4. In our case here, it is important that you use the Kekulized structure. This is (currently) 
necessary for Rosetta to communicate bond orders reliably to the BCL data structures that will 
handle design. Do not worry – the BCL will recompute aromaticity every time the molecule is 
modified and assign the appropriate atom types and bond orders to the molecules when it is 
converted into a Rosetta object again. 

 
The second step is not strictly mandatory; however, it is important if you want to be able to specify the 
parts of the scaffold that can be modified during design at the atom level (i.e., specify mutable atoms 
explicitly). The second step is to convert our params file into a molecule file (e.g., SDF or PDB).  
 

 
Why did we do this, you ask? Because Rosetta does not preserve input atom indices. The atom indices 
of the initial input file, e.g., LIG.sdf, differ from the atom indices of the molecule after it is read from a 
params file.  
 
If you visualize the two molecules in PyMOL you can see the difference in atom indexing (from 0) by 
clicking L → atom identifiers → rank in the options panel on the top right. 
 

 
Figure 2. Rosetta atom indices on input scaffold molecule. (A) The PDB ligand “LIG_0001.fa.pdb” output from 
molfile_to_params.py. (B) The PDB ligand “LIG.pdb” output from restype_converter reading in the params file 

generated by molfile_to_params.py. 

 
The indices that Rosetta will reference internally are the indices matching “LIG.pdb” (Figure 2, green 
molecule on the right) because they come from the interpretation of the params file. If you were to 
tell Rosetta “I want derivatize my scaffold at index 16” and you did not know that Rosetta renumbered 
the atoms of the original molecule, you would be very confused about why your oxygen atom was 
changing instead of your carbon atom. 
 
Now we are ready to start using the BCL-Rosetta small molecule design mover! 
 
  

${ROSETTA}/source/bin/restype_converter.bcl.linuxgccrelease \ 

-extra_res_fa LIG.fa.params \ 

-out:pdb 



Part 2: Intro to BCLFragmentMutateMover 
 
During this section it may be helpful to open the slides from the talk so that you can reference the 
standalone BCL commands in molecule:Mutate.  
 
Navigate to the BCL_Workshop_2022/Tutorial_5/scripts directory. 
 

 
Open the “SimpleTest.intro.sh" script with vim or gedit or any other editor of your choice. This is a 
wrapper shell script to call the rosetta_scripts.bcl.<os>release application. The arguments 
are, in order, the RosettaScripts XML file, receptor PDB filename, ligand PDB filename ligand params 
filename, and an output prefix.  
 
The first XML file contains the following block to initialize the BCLFragmentMutateMover: 
 

 
Run this script with the following command-line 
 

 
You will notice that the program crashes.  
 

 
This is expected because the object_data_label “Help” is invalid. This is good, though in the 

future maybe we’ll clean it up so it looks more informative and less like the world is ending. For 
comparison, you obtain a similar error message if you try to pass “Help” as a mutate option in the 
standalone BCL app molecule:Mutate. 
 

 

cd BCL_Workshop_2022/Tutorial_5/scripts 

<BCLFragmentMutateMover name="help"  

ligand_chain="X"  

object_data_label="Help" 

/> 

bash SimpleTest.intro.sh SimpleTest.intro_0.xml \ 

../inputs/receptor/Abl_Inactive_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb \ 

../inputs/ligands/LIG.fa.params \ 

HELP_0_ 

===> Failed to read 

bcl::util::Implementation<bcl::chemistry::FragmentMutateInterface>, 

error was: Given implementation "Help" is unknown, here are the 

allowed values {AddBond, AddMedChem, Alchemy, Connect, Cyclize, 

ExtendWithLinker, Fluorinate, Halogenate, React, RemoveAtom, 

RemoveBond, RingSwap} 

^^^ In serializer: Help 

Failed at pre-read hook, exiting 

bcl.exe molecule:Mutate -implementation Help 



These messages are telling us that the allowed mutate implementations are AddBond, AddMedChem, 
Alchemy, Connect, Cyclize, ExtendWithLinker, Fluorinate, Halogenate, React, RemoveAtom, 
RemoveBond, and RingSwap. This is helpful if you are not familiar with the available options.  
 
But now what? What if you think that you want e.g., Alchemy, but you are not positive what it does or 
how to use it? 
 
The next intro XML script expands on the BCLFragmentMutateMover definition: 
 

 
Run the following: 
 
bash SimpleTest.intro.sh SimpleTest.intro_1.xml \ 

../inputs/receptor/Abl_Inactive_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb \ 

../inputs/ligands/LIG.fa.params \ 

HELP_1_ 

 
This will also stop early. It will display a description of the mutate: 
 

 
Where I have written “…” there are descriptions of all the parameters that we can pass to the Alchemy 
mutate. 
 

<BCLFragmentMutateMover name="help"  

ligand_chain="X"  

object_data_label="Alchemy(help)" 

/> 

===> Requested help: Transforms atom/element types inside of a 

molecule 

  Default label : 

Alchemy(druglikeness_type=None,corina=0,mutable_atoms="",mutable_eleme

nts="",mutable_fragments="",complement_mutable_fragments=115,mutable_a

tom_comparison=Identity,mutable_bond_comparison=Identity,fixed_atoms="

",fixed_elements="",fixed_fragments="",complement_fixed_fragments=44,f

ixed_atom_comparison=Identity,fixed_bond_comparison=Identity,scaffold_

mol="",n_max_attempts=10,ov_shuffle_h=1,ov_reverse=0,allowed_elements=

H 

    C O N 

S,set_formal_charge=nan,set_chirality=X,restrict_to_bonded_h=0) 

  Parameters: 

 

... 

... 

 

Failed at reading arguments 

=std=bcl::util=> RotamerLibraryFile reading files has run for 1.85372 

seconds 



Once again, this is the information that is displayed if you were running the corresponding mutation 
from the BCL standalone version: 
 

 
Excellent! So now you have some familiarity with the basic syntax. Let’s keep going and start designing 
some kinase inhibitors.  

bcl.exe molecule:Mutate -implementation “Alchemy(help)” 



Part 3: Type I inhibitor design 
 
Type I inhibitors sit directly in the ATP binding pocket. Our scaffold can still mimic additional ATP-protein 
interactions to increase binding affinity. 
 

 
Figure 3. Overlap of ATP mimetic and Type I kinase inhibitor in Abl kinase domain. ATP and Abl structure obtained from PDB 
ID 2G2F2. Inhibitor constructed from analogous Type II inhibitor from PDB ID 2HIW1. 

 
In addition to the hinge binding hydrogen bonds, type I inhibitors often form hydrophobic-aromatic 
stacking interactions with the nucleotide-binding glycine-rich loop. Therefore, one rational design 
decision is to grow another aromatic ring system from our amino group. There are a lot of aromatic rings 
in the world and it’s not obvious what the optimal choice will be to improve target engagement. So, let’s 
sample a bunch and see which ones have the best interaction energies in Rosetta. 
 
The first implementation of FragmentMutateInterface that we will initialize our 
BCLFragmentMutateMover mover with is ExtendWithLinker. 
 

 
We define our mover with the name extend_with_linker (I frequently use ewl for short). The 
ligand is identified as chain X. Now we need to initialize the BCL object within Rosetta via the 
object_data_label option. For reference, feel free to look at the Tutorial 5 intro talk PowerPoint 
slides.  
 
ExtendWithLinker grows molecules using an assortment of linkers either internally or off a 
terminal heavy atom. Like all the FragmentMutateInterface-derived objects, if left unspecified 

ExtendWithLinker is given free rein to make random changes to your molecule (i.e., it acts on any 

<BCLFragmentMutateMover name="extend_with_linker"  

ligand_chain="X" 

object_data_label="ExtendWithLinker( 

ov_reverse=True, 

ov_shuffle_h=False, 

ring_library=%%rotamer_library%%/ring_libraries/ 

drug_ring_database.simple.aro.small.sdf.gz, 

extend_within_prob=0.0, 

direct_link_prob=100000, 

druglikeness_type=None, 

mutable_atoms=18)" 

/> 



atom in the molecule, it randomly selects rings to either append or use as bridges, it does not filter for 
druglikeness, and the relative probabilities of extending with rings, single elements, or chains are 
approximately equal).  
 
Here, we restrain the behavior of ExtendWithLinker to model our rational design decision. We set 

the mutable_atoms index to 18, corresponding to the amino nitrogen atom. The mutable and fixed 
atoms/elements/fragments options are common for all of these mutates. The ring library is taken from 
one of the default libraries provided with the BCL in the 
${ROSETTA}/source/external/bcl/rotamer_library/ring_libraries/ directory. 
The path to the rotamer library is set with a variable defined in the wrapper shell script. We set the 
relative probability of a direct link arbitrarily high (if you read the help menu, it will indicate that the 
probabilities for the different linking strategies are relative to one another) to ensure that our chosen 
ring is directly bonded to the amino nitrogen. 
 
There are several other options here that are common to other mutates. The ov_reverse and 

ov_shuffle_h flags are options related to “opening valences”. We cannot form a new covalent bond 
between the amino nitrogen and an atom in the aromatic ring randomly selected from the user-
specified pool of rings if we do not remove an existing bond. If we just force a bond willy-nilly, then we 
are frequently going to encounter invalid atom types. To avoid this issue, we remove hydrogen atoms to 
open a valence prior to making a bond.  
 
But there are two hydrogen atoms. Which one do we remove? By default, we randomly select one to 
remove. Chemically, it does not matter which one we remove because they are symmetric. However, 
because BCLFragmentMutateMover attempts to preserve binding mode information, the hydrogen 

atom we remove has a substantial impact on the pose. 
 

 
Figure 4. Effect of hydrogen atom selection on extension of a benzene ring from a primary amine. The magenta structure is 
our starting compound. Using the ExtendWithLinker mutate to grow from atom 6, we extend into a new benzene ring. If 

we disable random hydrogen atom selection (ov_shuffle_h=0) and start from the lower hydrogen atom index 

(ov_reverse=0) we get the addition as shown in the bottom left (green). If we disable random hydrogen atom selection and 

start from the higher hydrogen atom index (ov_reverse=1) we get the addition as shown in the bottom right (blue).  

 
To target the correct hydrogen atom for removal, first we turn off the random hydrogen atom selection 
by passing ov_shuffle_h=0. Then we note that the index that we want to remove is the higher 
index. The default behavior is remove the lowest index hydrogen atom first. Therefore, we set 
ov_reverse=1 to instead start removal from the highest index.  



 
To recreate the structures in the image shown above, first navigate to the small molecule input 
directory. 
 

 
Run ExtendWithLinker quickly using the BCL standalone app molecule:Mutate. 
 
 

 
Do the same thing for the other hydrogen atom. 
 

 
And that’s that! By adding this mover to our protocol, we will sample aromatic rings linked to the amino 
nitrogen, and we will preserve the hinge hydrogen bond donor from our ligand (unless Rosetta perturbs 
the pose substantially during a subsequent FastRelax). 

 
Let’s do a bit more rational design for our type I inhibitor simulations. The benzene ring of our scaffold is 
surrounded by several hydrocarbon sidechains. We can consider adding one or two substituents to form 
favorable Van der Waals interactions. To do this, we will use the Alchemy and Halogenate mutates.  
 

 

cd BCL_Workshop_2022/Tutorial_5/inputs/ligands  

bcl.exe molecule:Mutate \ 

-input_filenames LIG.sdf \ 

-implementation "ExtendWithLinker(\ 

mutable_atoms=6,\ 

direct_link_prob=10000,\ 

ov_reverse=0,ov_shuffle_h=0,\ 

ring_library= \ 

$BCL/rotamer_library/ring_libraries/individual_rings/000.sdf.gz)" \ 

-output ../../outputs/T1L.benzene.0.sdf 

bcl.exe molecule:Mutate \ 

-input_filenames LIG.sdf \ 

-implementation "ExtendWithLinker(\ 

mutable_atoms=6,\ 

direct_link_prob=10000,\ 

ov_reverse=1,ov_shuffle_h=0,\ 

ring_library= \ 

$BCL/rotamer_library/ring_libraries/individual_rings/000.sdf.gz)" \ 

-output ../../outputs/T1L.benzene.1.sdf 

<BCLFragmentMutateMover name="alchemy_core"  

ligand_chain="X"  

object_data_label="Alchemy( 

druglikeness_type=None, 

mutable_atoms=11 12 13 14 15, 

allowed_elements=C, 

restrict_to_bonded_h=1)" 

/> 



This defines an Alchemy mutate that will choose an atom from the benzene ring and  change its bonded 
hydrogen atom into a carbon. If restrict_to_bonded_h was set to 0, Alchemy would modify the 
chosen atom directly.  
 

 
This defines a Halogenate mutate that will choose an atom from the benzene ring, open a valence by 
removing a hydrogen atom, and then add either a fluorine or chlorine. It is reversible, which means that 
this mutate has a 50% chance of removing a halogen from one of the mutable atoms.  
 
You may ask “Can’t we just use Alchemy to add halogens?” Sure, no problem. Alchemy has the ability 
to mutate element types in halogens or vice versa if desired. However, usually in Alchemy we have to 

worry about making sure that we have an atom type available with the desired formal charge if we are 
swapping heteroatom identities or some such thing. Halogens are actually a bit easier because the atom 
typing is far more restricted, so in some sense the logic in Alchemy is overkill for halogens. Moreover, 

halogens are special in medicinal chemistry and deserve an opportunity for special logic that is ill-placed 
in Alchemy. For example, we can restrict the addition of individual halogens to aromatic rings, and we 
are experimenting with optional biased probabilities based on stability of the halogenated substructure. 
Nevertheless, the choice is yours.  
 
In any event, that is more of a code design issue. Here, we will create a RandomMover with equal 
probability of choosing Alchemy or Halogenate. 

 

 
This will give us up to two substituents on our benzene ring. The substituents will be either a methyl, 
fluorine, or chlorine. 
 
Now put it all together! The final protocol in the XML script will perform an initial minimization of the 
starting receptor with the scaffold, followed by ExtendWithLinker to add an aromatic ring to our 
amino nitrogen atom, followed by two repeats of Alchemy and/or Halogenate to add substituents 

to our benzene ring. Finally, we do a constrained FastRelax on the protein-ligand interface and score 
the complex.  
 
Navigate to the output directory. 
 

 
 

<BCLFragmentMutateMover name="halogenate_core"  

ligand_chain="X"  

object_data_label="Halogenate( 

druglikeness_type=None, 

mutable_atoms=11 12 13 14 15, 

reversible=1, 

allowed_halogens=F Cl)" 

/> 

<RandomMover name="decorate_core" movers="halogenate_core, 

alchemy_core" weights="0.5,0.5" repeats="2"/> 

cd BCL_Workshop_2022/Tutorial_5/outputs/  



 
How do the inhibitors you designed look compared to the Okram et al.1 inhibitor? Are there similarities? 
Differences? Try additional mutates to see what else you can do. 
 
One final note before we move on to Part 4: Have you noticed that you are able to perform sequential 
mutates on your molecule by referencing atom indices in your original scaffold? This is generally 
possible because new atoms are added to the end of the atom vector, so they do not change the 
numbering of our original indices. In our Alchemy mutate you may have wondered “Why is there this 
restrict_to_bonded_h” option? Can’t we just specify an atom index for a hydrogen atom in the 
mutable_atoms option?” Well, you can, but it is probably a bad idea. During the fragment cleaning, 
retyping, and 3D conformer generation phase after the mutation is made, hydrogen atoms are 
removed and re-added. This changes the indexing of hydrogen atoms. So, stick with referencing heavy 
atom indices and you should be good.  
 
But what do you do if the molecule undergoes a large substructure change, or greatly expand the initial 
molecule and want to make changes to the new region? Find out how we handle that in Part 4! 
 
  

bash ../scripts/SimpleTest.design_tk1.0.sh \ 

../scripts/SimpleTest.design_tk1.0.xml \ 

../inputs/receptor/Abl_Active_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb \ 

../inputs/ligands/LIG.fa.params \ 

DEMO.design.tk1.0_ 



Part 4: Type II inhibitor design 
 
Type II inhibitors also compete with ATP binding, but unlike Type I inhibitors they extend into a back 
hydrophobic pocket of the kinase domain.  
 

 
Figure 5. Comparison of Type I and Type II tyrosine kinase inhibitors.  

 
Our rational design strategy will therefore start by extending the scaffold into the back hydrophobic 
pocket. Let’s start with our trusty friend ExtendWithLinker again.  
 

 
This time we will set an arbitrarily high probability for the amide linker. Amide linkers can be grown from 
two directions. The amide_n_attach_prob specifies the probability that the nitrogen atom of the 
amide will be covalently bonded to the chosen atom in our starting fragment. The remainder of the 
probability is the likelihood that the carbon atom in the amide will be covalently bonded to the chosen 
atom. We set a single mutable atom. We also set a single ring to use from our library – a benzene ring 
(for simplicity)! Feel free to peruse the ring library or use your own rings. 
 
So, let’s assume you were to run just that mutate. You would now have your original scaffold plus an 
amide linker connecting it from atom index 14 to a new benzene ring. How do we go about modifying 
the new substructure in subsequent design steps? We certainly do not necessarily know what the atom 
indices will be.  
 
Well, you may have noticed from the help menu options that we can specify mutable atoms by more 
than just their indices. There are four options: 
1. Do not specify anything and all atoms default to mutable 
2. Mutable atoms – Specify mutable atoms by their index in the molecule (0-indexed) 
3. Mutable elements – All atoms of the specified element types are set as mutable. 
4. Mutable fragments – This option is very useful. You can pass SD files of fragments for substructure 
comparison to your current molecule. You can pass as many or few fragments as you want. Atoms in 

<BCLFragmentMutateMover name="extend_with_linker"  

ligand_chain="X"  

object_data_label="ExtendWithLinker( 

ring_library= 

%%rotamer_library%%/ring_libraries/individual_rings/000.sdf.gz, 

extend_within_prob=0.0, 

amide_link_prob=100000, 

amide_n_attach_prob=1.0, 

druglikeness_type=None, 

mutable_atoms=14)" 

/> 



matching substructures will be set to mutable. These are cumulative. There are two other options, 
mutable_atom_comparison and mutable_bond_comparison that allows users to specify the 
resolution of the substructure comparison. Part of why this option is so useful is because there is also 
an option to invert the matched atoms. If users set complement_mutable_fragments to true, 
then the mutable atoms are the ones that did not match in any of the substructure comparisons. 
 
And if that is not good enough, there are four identical options for setting fixed (non-mutable) atoms. 
Importantly, fixed atoms are always set after the mutable atoms. This means that the fixed atom 
selections modify the mutable atoms and not vice versa. This is consistent with the default of setting all 
atoms to be mutable unless otherwise specified.  
 
I am planning on adding a few more options so that users can selectively turn on or off more generic 
topological units, such as rings, chains, rigid fragments, etc. Stay tuned! 
 
With this new knowledge, let’s add a trifluoromethyl group to our newly created benzene ring. 
 

 
The mutfrag variable will be defined in our wrapper shell script. In this case, it will just be the SDF 

corresponding to our scaffold. We want to invert the substructure match, so we set 
complement_mutable_fragments to true. We then say that AddMedChem cannot try to attach 

the trifluoromethyl group to nitrogen or oxygen atoms, which will prevent it from randomly selecting 
one of the amide heteroatoms. It could in principle select the carbon atom from the amide to try and 
bond to; however, there are no valences that can be opened, which would cause the move to fail and 
try again up to n_max_mutates. Alternatively, we can save it the trouble and specify 
restrict_additions_to_aromatic_rings as true. The only aromatic ring atoms not in our 
starting scaffold are the benzene ring carbon atoms.  
 
Thus, this mover will add a trifluoromethyl group to one of only five available atom indices on the 
amide-linked new benzene ring (two of which are symmetric, leaving us with three unique positions). At 
this point, if you want to restrict the space available even further for the AddMedChem mutate, the 
best advice I have is to start anew with the structure obtained after ExtendWithLinker so that you 
can see the atom indices. Beyond the obvious observation that we can only be so specific about how to 
add atoms to other atoms that do not exist in the starting fragment, it is also important to note that this 
software was written to help with drug design, not drug drawing. For the latter, stay tuned as we see 
how to integrate these tools into FoldIt Drug Design.  
 
Finally, let’s add a small decoration to the core benzene ring using the Alchemy mutate. 
 

<BCLFragmentMutateMover name="add_medchem"  

ligand_chain="X"  

object_data_label="AddMedChem( 

medchem_library=%%medchem_fragments%%/trifluoromethyl.sdf.gz,  

druglikeness_type=None, 

mutable_fragments=%%mutfrag%%, 

complement_mutable_fragments=1, 

restrict_additions_to_aromatic_rings=1, 

fixed_elements=N O)" 

/> 



 
Put it all together and run the protocol. 
 

 
This script provides everything you need to recreate the type II inhibitor in Okram et al.1; however, there 
is some stochasticity in the current design, and as we just discussed we have finite ability to create the 
exact molecule we want from scratch. But more importantly, how do the output molecules look? Do 
they appear to be type II inhibitors? Do they have similar features to type II inhibitor in Okram et al.1 (or 
other TKIs you may have seen)?  
 
Let’s expand our design further. Check out the “SimpleTest.design_tk2.1.xml” script. How does it differ 
from the script we just ran? Do you expect more diversity or less in our designs? Run this protocol. 
 

 
By this point, you have designed both type I and type II inhibitors. In Part 5, we will learn more about 
type I and II inhibitors and how we can begin to use our design protocols with receptor conformational 
sampling techniques. 
 
Part 4 Extension (Optional): Adding the Fluorinate mover to our toolbox 
 
In this tutorial we just used benzene as the base for our interactions with the back hydrophobic pocket. 
In principle, however, it does not need to be benzene. Here are a couple of extra things to try if you are 
interested: 
 
1. Sample alternative rings. You can set your ring library to be an SDF with multiple rings, in which case 
one will be randomly selected each round, or you can sequentially iterate over SD files containing 
individual rings to enumerate. 
 

<BCLFragmentMutateMover name="alchemy_core"  

ligand_chain="X"  

object_data_label="Alchemy( 

druglikeness_type=None, 

mutable_atoms=11 12, 

allowed_elements=C, 

restrict_to_bonded_h=1)" 

/> 

bash ../scripts/SimpleTest.design_tk2.0.sh \ 

../scripts/SimpleTest.design_tk2.0.xml \ 

../inputs/receptor/Abl_Inactive_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb \ 

../inputs/ligands/LIG.fa.params \ 

DEMO.design.tk2.0_ 

bash ../scripts/SimpleTest.design_tk2.1.sh \ 

../scripts/SimpleTest.design_tk2.1.xml \ 

../inputs/receptor/Abl_Inactive_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb \ 

../inputs/ligands/LIG.fa.params \ 

DEMO.design.tk2.1_ 



2. Forget the rings. Let’s be creative. I will introduce you to the special purpose Fluorinate mutate. 
You may ask, “Why do we have a mutate specifically for fluorine when we can already manipulate 
fluorine atoms with Halogenate? If you really needed to use fluorine more dynamically, can’t you just 
enable it in Alchemy?” Good questions. These are things we considered. The answer boils down to 
“fluorine is special.” It has unique chemistry, and while it is often used to decorate scaffolds like chlorine 
or bromine or methyl or methoxy, it is also often used to saturate individual carbon atoms on aliphatic 
chains or non-aromatic rings. If you are new to small molecule drug design, you may have noticed that 
this effect can also be obtained with trifluoromethyl and trifluoromethoxy fragment additions in the 
AddMedChem mutate! 
 
So, you will notice that the Fluorinate mutate contains several specific options to manage the 
minimum and maximum number of fluorine atoms that are added to a single carbon atom in a single 
move. Let’s combine the AddMedChem and Fluorinate mutates to add an ethylamide and saturate 

the terminal carbon with fluorine atoms. 
 

 
And let’s take it a step further. Let’s add a single carbon atom to our benzene ring first and then add the 
fluorinated ethylamide. This will give us a slightly longer chain. 
 

bcl.exe molecule:Mutate \ 

-input_filenames LIG.sdf \ 

-output LIG.amide_cf3.sdf \ 

-implementation "AddMedChem(\ 

mutable_atoms=13,\ 

medchem_library=$BCL/rotamer_library/medchem_fragments/ethylamide.sdf.

gz)" \ 

"Fluorinate(\ 

mutable_fragments=LIG.sdf,\ 

complement_mutable_fragments=1,\ 

fixed_elements=N O, \ 

n_min_f=3,\ 

n_min_h_sub=3)" 



 
Visualize your molecules in PyMOL. Try making a protocol in RosettaScripts to do the same design but in 
the context of a receptor binding pocket.   

bcl.exe molecule:Mutate \ 

-input_filenames LIG.sdf \ 

-output LIG.amide_cf3.sdf \ 

-implementation "Alchemy(\ 

mutable_atoms=13,\ 

allowed_elements=C,\ 

restrict_to_bonded_h=1\ 

)" \ 

"AddMedChem(\ 

mutable_fragments=LIG.sdf,\ 

complement_mutable_fragments=1,\ 

medchem_library=$BCL/rotamer_library/medchem_fragments/ethylamide.sdf.

gz)"\ 

"Fluorinate(\ 

mutable_fragments=LIG.sdf,\ 

complement_mutable_fragments=1,\ 

fixed_elements=N O,\ 

n_min_f=3,\ 

n_min_h_sub=3)” 



Part 5: Induced-fit inhibitor design 
 
You may have noticed that in the two previous design examples that we used two different PDB files for 
the Abl kinase receptor structure. For the Type I inhibitor we used the active state (activation loop 
extended outward; DFG-in) and for the Type II inhibitor we used the inactive state (activation loop 
folded inward; DFG-out). Kinases can adopt many conformations that span the active and inactive 
states. The spectrum of available states differs between kinases, as well as the propensity for a kinase to 
be in one state or another. They are fascinatingly dynamic proteins! 
 
Type II inhibitors require the kinase domain to be in either an inactive or intermediate state to bind. This 
is because the active state sterically occludes the back hydrophobic pocket that type II inhibitors target. 
In contrast, type I inhibitors have been observed in both active and inactive states3. Consistent with the 
observation that different kinases have different conformational preferences, it has become well-
accepted that not all inhibitors bind to the same conformation across kinases4.  
 
Therefore, it may be of interest to sample multiple conformational states of a protein during drug 
design. This can allow the user to filter out molecules that are predicted to preferentially bind an 
undesired conformation, or to identify features that stabilize a desired conformation.  
 
Rosetta has many powerful tools for sampling protein conformational changes: fragment insertion, 
generalized kinematic closure, thermodynamic movers for canonical sampling, etc. There are also tools 
for sampling the interfaces of protein-ligand complexes explicitly, such as the low-resolution 
Transform mover and HighResDocker.  
 

The Transform mover can optionally incorporate protein flexibility through pre-generated 

conformational ensembles. Users can pass an ensemble of proteins that are rapidly scored with the 
Transform mover scoring grids. The protein with the best score is carried forward to subsequent 
stages of the docking protocol. 
 
For this example, we will use a variant of this protocol to score our inhibitor designs on multiple pre-
generated conformations of the same protein prior to high-resolution refinement. The benefit to this 
approach is that it can be done faster than on-the-fly sampling of large conformational changes, and it 
ensures consistency in the sampled conformational space between molecule designs.  
 
We will use 16 unique conformations of Abl kinase rigorously generated by Meng et al. 2018 using 
extensive molecular dynamics (MD) simulations coupled with Markov state models (MSM)5. The 
approach taken by Meng et al. blindly recovered known publicly available Abl conformations as well as 
previously unreleased inhibitor-stabilized conformers from the private Lilly database5. 
 
Let’s begin. The Abl conformers have already been obtained from the literature and stashed in the 
inputs/receptors/ directory. Make a list containing the full paths of each of the conformers. 
 

 
Get the full path to the list 
 

cd BCL_Workshop_2022/Tutorial_5/inputs/receptor/conformers 

 

readlink -e *.pdb > confs.list 



 
The script that we will use to run the RosettaScripts protocol is called “InducedFitDrugDesign_v1.sh”. In 
that script we define a variable CONFS_LIST. Define CONFS_LIST with the full path to “confs.list” on your 
workstation. As we did previously, also make sure the rotamer library and fragments variables are set to 
the correct directory. 
 
Let’s look at the Transform mover in this example. 
 

 
It differs from how we usually set it up for ligand docking because here we are not using it to sample 
large ligand pose changes. We just want to do a small bit of optimization of the designed ligand in each 
receptor pocket. We have small distance and angle perturbations, 0.2 Angstroms and 2.0 degrees, 
respectively, and we disable initial perturbations. The ensemble_proteins option will take a 
variable corresponding to the PDB list we just made. The option use_main_model is set to false, 
indicating that the best scoring model is the one we will carry forward. 
 
We have defined a number of BCLFragmentMutateMover movers that are very similar to the ones we 
used in Parts 3 and 4. Take some time to go through them and make sure you fully understand what 
each is doing. One thing you will notice is that we are now using 
druglikeness_type=IsConstitutionDruglike instead of druglikeness_type=None. 

This acts as an internal filter to help prevent the design of grotesque molecules. To see what this filter 
does, run the following: 
 

 
Finally, a note on the configurational sampling in this protocol. The initial minimization may bias the 
simulation toward the input conformer. Therefore, for production simulations it is advised that multiple 
independent trials are run starting from each conformer, or alternatively that the minimization step is 
removed, and each conformer is minimized with the scaffold outside of this protocol prior to starting. 
 
Let’s run this protocol! 
 

 
First, for type I inhibitors: 
 

readlink -e confs.list 

# Low resolution docking 

<Transform name="transform" chain="X" box_size="6.0" 

move_distance="0.2" angle="2.0" cycles="500" repeats="1" 

temperature="%%temp%%" initial_perturb="0.0" 

initial_angle_perturb="0.0" ensemble_proteins="%%confs_list%%" 

use_main_model="false" /> 

bcl.exe molecule:Properties -add "IsConstitutionDruglike(help)" 

cd BCL_Workshop_2022/Tutorial_5/outputs/ 

i=1; bash ../scripts/InducedFitDrugDesign_v1.sh \ 

../scripts/InducedFitDrugDesign_v1.xml \ 

../inputs/receptor/conformers/ct7b01170_si_004_0001_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb ../inputs/ligands/LIG \ 

1.2 $i IF_t${i}_ & 



 
Second, for type II inhibitors: 
 

 
Finally, there is a RandomMover defined that will randomly select either a type I or type II design 
pattern if the “TYPE” variable in the wrapper shell script is set to “1-2”. 
 

 
Now visualize your output structures. How did they turn out? Are the type II inhibitors more frequently 
in an inactive state than an active state? Do the type I inhibitors have a conformational state 
preference? Note that we initialized these simulations with a receptor in the active conformation. If you 
start with a different protein conformer, does the output follow a similar trend? 
 
In a preliminary benchmark in an earlier version of the BCL-Rosetta integration, we used a related set of 
mutate options to create type I and II inhibitors and found the following distribution of states: 
 

 
Figure 6. Induced-fit Abl kinase domain conformations during drug design. 

 
 
Congratulations! You have completed Tutorial 5. Please feel free to continue tinkering with the options. 
If you have any questions, do not hesitate to ask. 
  

i=2; bash ../scripts/InducedFitDrugDesign_v1.sh \ 

../scripts/InducedFitDrugDesign_v1.xml \ 

../inputs/receptor/conformers/ct7b01170_si_004_0001_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb ../inputs/ligands/LIG \ 

1.2 $i TEST_t${i}_ & 

i=1-2; bash ../scripts/InducedFitDrugDesign_v1.sh \ 

../scripts/InducedFitDrugDesign_v1.xml \ 

../inputs/receptor/conformers/ct7b01170_si_004_0001_A.pdb \ 

../inputs/ligands/LIG_0001.fa.pdb ../inputs/ligands/LIG \ 

1.2 $i TEST_t${i}_ & 



References 
 
(1)  Okram, B.; Nagle, A.; Adrián, F. J.; Lee, C.; Ren, P.; Wang, X.; Sim, T.; Xie, Y.; Wang, X.; Xia, G.; 

Spraggon, G.; Warmuth, M.; Liu, Y.; Gray, N. S. A General Strategy for Creating “Inactive-
Conformation” Abl Inhibitors. Chemistry & Biology 2006, 13 (7), 779–786. 
https://doi.org/10.1016/j.chembiol.2006.05.015. 

(2)  Levinson, N. M.; Kuchment, O.; Shen, K.; Young, M. A.; Koldobskiy, M.; Karplus, M.; Cole, P. A.; 
Kuriyan, J. A Src-Like Inactive Conformation in the Abl Tyrosine Kinase Domain. PLOS Biology 2006, 
4 (5), e144. https://doi.org/10.1371/journal.pbio.0040144. 

(3)  Gajiwala, K. S.; Feng, J.; Ferre, R.; Ryan, K.; Brodsky, O.; Weinrich, S.; Kath, J. C.; Stewart, A. Insights 
into the Aberrant Activity of Mutant EGFR Kinase Domain and Drug Recognition. Structure 2013, 21 
(2), 209–219. https://doi.org/10.1016/j.str.2012.11.014. 

(4)  Hanson, S. M.; Georghiou, G.; Thakur, M. K.; Miller, W. T.; Rest, J. S.; Chodera, J. D.; Seeliger, M. A. 
What Makes a Kinase Promiscuous for Inhibitors? Cell Chem Biol 2019, 26 (3), 390-399.e5. 
https://doi.org/10.1016/j.chembiol.2018.11.005. 

(5)  Meng, Y.; Gao, C.; Clawson, D. K.; Atwell, S.; Russell, M.; Vieth, M.; Roux, B. Predicting the 
Conformational Variability of Abl Tyrosine Kinase Using Molecular Dynamics Simulations and 
Markov State Models. J. Chem. Theory Comput. 2018, 14 (5), 2721–2732. 
https://doi.org/10.1021/acs.jctc.7b01170. 

 


