RosettaAntibodyDesign (*RAbD*)

Jared Adolf-Bryfogle, PhD

PhD Advisor: **Dr. Roland Dunbrack** Postdoctoral Advisor: Dr. William Schief

Antibody Structure

- Two protein chains
 - Light (L) and Heavy (H)
 - 1 Gene locus codes for Heavy chain
 - 2 Gene loci code for Light chain (Lambda/Kappa)
- 6 Complementarity Determining Regions (CDRs)
 - Highly variable in length, structure, and sequence
- Antibody Framework
 - Highly conserved for each gene locus

Antibody Structure – Full IgG

X-ray crystal structure of an antibody, full-length IgG (PDB ID 1IGT).

Light Chain – Green/Yellow Heavy Chain – Red/Blue

Antibody Structure *Fv Fragment and CDRs*

X-ray crystal structure of an antibody, Fv (PDB ID 2J88).

Heavy Chain

PyIgClassify: Antibody Identification

- Identifies from Sequence:
 - Antibody chains
 - Antibody gene
 - Germline
 - CDR/Framework positions
- Renumbers PDB Structures
 - AHo Numbering Scheme
 - North/Dunbrack CDR
 Definitions

doi:10.1006/jmbi.2001.4662 available online at http://www.idealibrary.o	com on IBE J. Mol. Biol. (2001) 309, 657-670							
Yet Another Numbering Scheme for Immunoglobulin Variable Domains: An Automatic Modeling and								
Analysis 1001	H ave							

PyIgClassify: Server Frontend

	0						PylgClassify					
4.1		😁 dunbra	ck2.fccc.edu/PylgCl									C Reader
-		lash For Lo	op Examples Pylgi	Classify 1	Chimera Develp	Lab/Wiki Trac Ro	ettaTests ToolsSubs	eRosettaWik	RosettaWiki	C++ Came Prog	ramming Authent	icatios this site.
84	box (118) -	ja]	www.drexel.ed	0	IpenClassroom	PytgClassify	structure - C	ioo. [1	ipes - Google -	Search re	suits f	irgisəbstr + [1
	Clusters of Antibody CDR Loop Conformations								ns	云韩		
				Ho	ime Sea	rch Submit	Statistics	Download	Help	About		
						CDR	Clusters for 1	L1-11				
								She	w Non-Redun	dant Chains On	v (Export to csv File
	#St.ru	ctures	- 656; #C	hains	- 1033;	#Clusters -	6.					
	Clust	er PDB	Resolution	Gene	PDB Species	CDR Germline	Frame Germline	Pos (seq)	Pos (auth)	Sequence	Ranachandra	Distance(*)
	L1-11-	-1 309AL	1.2	kappa	Nus nusculus	Mo_IGKV5_43*01	Mo_IGKV5_43*01	24	24	RASOSIGNNLH	BBABPDODP3B	7
	L1-11	1 IMEXL	1.25	kappa	Non nusculus	Mo_IGKV6_15*01	Mo_ICKV6_15*01	24	24	KASONVOTNVA	BPABPDCCP38	6
	11-11	1 1MQKL	1.28	kappa	Nus nusculus	Mo_IGKV12_44*01	No_ICKV12_44*01	24	24	PASENIYSYLA	зразросорза	6
	L1-11	1 20204	1.3	kappa	Homo sapiens	Nu_IGEV1_33*01	Ba_IGKV1_33*01	26	24	QASQDISSYLS	арааросораа	6
	L1-11-	1 20208	1.3	kappa	Homo sapiens	Hu_IGKV1_33*01	Ba_IGKV1_33+01	26	24	OV80DI SMATN	BRABRDGDRBB	6
	L1-11-	-2 388UP	1.3	kappa	Non nusculus	Mo_IGKV10_96*01	Mo_IGKV10_96*01	27	24	RASQDIRNYLN	BPABPDLLPBB	5
	11-11-	·2 23080A	1.4	kappa	Non nusculus	Mo_IGKV10_96*01	Mo_ICKV10_96*01	24	24	RABQDISNYLN	BPABPDLLPBB	5
	11-11-	2 200000	1.4	kappa	Nus nusculus	Mo_IGKV10_96*01	No_ICKV10_96*01	24	24	RASQUISNYLN	39839012933	5
	L1-11	1 27X71	1.49	kappa	Nes nueculus	Mo_IGRV9_120*01	No_IGKV9_120*01	24	24	RASODIGSKLY	ардаросараа	9
	L1-11-	-1 2VXVL	1.49	kappa	Homo sapiens	Hu_IGKV3_D-15*03	Ba_IGKV3_D-15*01	24	24	PASESISSNLA	BBABPDGDPBB	5
	L1-11-	-2 1A2YA	1.5	kappa	Non nusculus	Mo_IGKV12_41*02	Mo_IGKV12_41*02	24	24	RASONIHNYLA	BPABPDLLPBB	4
	11-11-	-3 4HPYL	1.5	lambda	liono sapiens	Hu_IGLV3_10*01	Ha_IGLV3_10*01	24	24	SCOALPREYAY	33AAAA33233	39
	11-11-	1 3CDCA	1.53	kappa	Homo sapiens	Nu_IGKV1_33*01	Ha_IGKV1_33*01	26	24	QASQDISSYLI	арааросораа	8
	L1-11	1 30003	1.53	kappa	Homo sapiens	Nu_IGKV1_33*01	Ba_IGKV1_33*01	26	24	QASQDISSYLI	ардаросораа	
	L1-11-	-1 3CDFA	1.53	kappa	Homo sapiens	Ho_IGKV1_33+01	HaTCKAT 33.01	26	24	OV80DI SMAIN	BBABPDGDPBB	7

- Qifang Xu
- Updates Bi-Yearly
 - Includes all Antibodies of the PDB
- Submit
- Explore
- Download

Nucleic Acids Research Advance Access published November 11, 2014

```
Nucleic Acids Research, 2014 1
doi: 10.1093/nar/gku1106
```

PylgClassify: a database of antibody CDR structural classifications

Jared Adolf-Bryfogle^{1,2}, Qifang Xu¹, Benjamin North¹, Andreas Lehmann¹ and Roland L. Dunbrack, Jr^{1,*}

http://dunbrack2.fccc.edu/PyIgClassify/

CDR Clustering

- **Cluster**: Group of similar structures
- Bioinformatic Analysis
 - High quality data set
 - 72 Non-H3 clusters
 - Consensus
 - Sequence
 - Conformation
- Knowledge-Based Antibody Design

RosettaAntibodyDesign (RAbD)

- Knowledge-Based Antibody Design
- Application Application can be used for many antibody design projects
 - Affinity Maturation
 - Homologous redesign
 - Stability improvement
 - De Novo design

 Framework - set of components we can use in PyRosetta or RosettaScripts

Antibody Designer: Overview

- Monte Carlo Algorithm.
- Whole CDR Sampling (GraftDesign)
 - Sample structures from database
 - Insert and optimize peptide bond without CDR disruption
 - New Graft Algorithm
 - 100% Closure
 - Roughly mimics
 Somatic Recombination
- Sequence Sampling (SeqDesign)
 - Sample amino acid types
 - According to CDR Cluster Profiles
 - Roughly mimics
 Somatic Hypermutation

Antibody Designer: Overview

- Structure Optimization
 - Change/Sample DOF to minimize total energy of system
 - Integrated binding energy optimization instead of total energy
- Constraints
 - Dihedral constraints
 - Circular Harmonic
 - CDR Cluster based
 - Epitope/Paratope constraints
 - Site Constraints
- Lambda/Kappa specific design

Antibody Designer: Optional CDR File Overview

- Allows Tailored Design
 - Strategy-based Design
 - Redesigns, *de novo* design, etc.

• Simple Syntax

- CDR-Level Control

Antibody Designer: CDR Instruction File Example

First Column: CDR or ALL

Second Column: Option Type

ALL GraftDesign ALLOW ALL SeqDesign ALLOW

ALL CDRSet EXCLUDE PDBIDs 1N8Z 3BEI

L1 CDRSet EXCLUDE Clusters L1-11-1

L2 CDRSet INCLUDEONLY CLUSTER L2-8-1

L3 CDRSet STAY_NATIVE_CLUSTER

Capitalization Ignored

Example Command-Line

antibody_designer.default.linuxclangrelease -s
my_ab.pdb -nstruct 500 -seq_design_cdrs L1 L2
L3 -light_chain lambda -optimize_dG

Top Decoy Examples

2dqc

2j88

Top Decoy H3 Variability

2j88

2dqc

2J88 Antibody Improvement

- Antibody binds to Bee Hyaluronidase
 Major allergen of Bee Venom
- Binds at 15.6 nM
 Top design binds 2.5 nM
- Designed L1/L4 (DE framework)
- Designed H2
- Dock/No Dock, only CDRs with profiles

Fig 8. Designed antibodies against bee hyaluronidase.

Adolf-Bryfogle J, Kalyuzhniy O, Kubitz M, Weitzner BD, Hu X, et al. (2018) RosettaAntibodyDesign (RAbD): A general framework for computational antibody design. PLOS Computational Biology 14(4): e1006112. https://doi.org/10.1371/journal.pcbi.1006112 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006112

CH103 Antibody Improvement

- Antibody binds to CD4 GP120 binding site
- ZM176 Crystal 4JAN
- CH103 binds 4JAN at **2.30 x 10**-06 M
- Designed L1/L3
- Designed H2

Fig 9. Binding of designed antibodies to HIV gp120.

Adolf-Bryfogle J, Kalyuzhniy O, Kubitz M, Weitzner BD, Hu X, et al. (2018) RosettaAntibodyDesign (RAbD): A general framework for computational antibody design. PLOS Computational Biology 14(4): e1006112. https://doi.org/10.1371/journal.pcbi.1006112 https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006112

Tutorial

- 1) *Affinity improvement/Library Design* using Sequence Design only
- 2) *Redesign* an antibody using GraftDesign and SequenceDesign
- 3) *De Novo design* using All-CDR Sequence Design and GraftDesign of various lengths and clusters
- 4) *Custom protocol creation using* RAbD components in RosettaScripts

Thanks!