
Tutorial 4: Ligand-based multi-component reaction design simulation of selective dopamine receptor
D4 antagonists.
Author: Benjamin P. Brown (benjamin.p.brown17@gmail.com)
Date: 01-2022

Background
Dopamine receptors are G-protein coupled receptors (GPCRs) that are heavily associated with many
neurological functions. The endogenous small molecule ligand is dopamine. Dopamine receptors can be
functionally classified based on their downstream signaling pathways. Broadly, D1-like receptors, which
include dopamine receptor D1 (DRD1) and DRD5, activate adenylyl cyclase to stimulate an increase in
intracellular cyclic adenosine monophosphate (cAMP). The D2-like receptors, which include DRD2,
DRD3, and DRD4, inhibit adenylyl cyclase to reduce the intracellular concentration of cAMP. Dysfunction
in dopaminergic signaling has been associated with a number of neurological and psychiatric disorders,
such as Parkinson’s disease, schizophrenia, ADHD, and addiction. These disorders have few pharmaco-
logical interventions to reduce diseases severity. Therefore, dopamine receptors represent an important
therapeutic target for an unmet clinical need.

In this tutorial, we will use the BCL to design new candidate small molecule orthosteric antagonists for
DRD4 using a reaction-based design framework. The tutorial will be split into two sections. The first sec-
tion will cover the creation of MDL RXN files for reaction-based design. The second section will demon-
strate how to execute a reaction with user-specified reagents. At the end there are some questions that
integrate what you have learned in Tutorials 1 – 3 with the new material in this tutorial.

Part 1: Preparing an MDL RXN file

The reaction, or RXN, file format is similar in structure to the SDF. An SDF contains blocks of molecules
organized into rows of atoms and rows of bonds. For our tutorial on reaction-based design, we will be
using a piperazine ring as a constant reagent. So, let’s start just by looking at an SDF of piperazine:

The first three lines are name lines. The fourth line begins with the numbers of atoms and bonds, re-
spectively, which in this case reads 16 and 16. The V2000 SDF format has a limit of 999 atoms per entry.
The next block of lines corresponds to each atom in the molecule. If an SDF is loaded into the BCL, the
atom vector indices will correspond to these rows (except they will be 0-indexed). The first three col-
umns of the on the atom rows are the X, Y, and Z coordinates, respectively. The element type follows in

piperazine

 PyMOL2.3 3D 0

 16 16 0 0 0 0 0 0 0 0999 V2000

 1.0862 0.1858 -0.9903 C 0 0 0 0 0 0 0 0 0 0 0 0

 -1.2829 0.6961 -0.2533 C 0 0 0 0 0 0 0 0 0 0 0 0

 -1.0862 -0.1857 0.9903 C 0 0 0 0 0 0 0 0 0 0 0 0

 1.2830 -0.6960 0.2534 C 0 0 0 0 0 0 0 0 0 0 0 0

 -0.6440 -0.6818 -1.5984 H 0 0 0 0 0 0 0 0 0 0 0 0

 0.4645 -0.8770 2.1009 H 0 0 0 0 0 0 0 0 0 0 0 0

 -0.3575 0.2458 -1.3197 N 0 0 0 0 0 0 0 0 0 0 0 0

 0.3575 -0.2458 1.3198 N 0 0 0 0 0 0 0 0 0 0 0 0

 1.4337 1.2236 -0.7688 H 0 0 0 0 0 0 0 0 0 0 0 0

 1.7144 -0.1956 -1.8319 H 0 0 0 0 0 0 0 0 0 0 0 0

 -1.0317 1.7547 -0.0019 H 0 0 0 0 0 0 0 0 0 0 0 0

 -2.3555 0.6812 -0.5660 H 0 0 0 0 0 0 0 0 0 0 0 0

 -1.7144 0.1956 1.8319 H 0 0 0 0 0 0 0 0 0 0 0 0

 -1.4337 -1.2235 0.7687 H 0 0 0 0 0 0 0 0 0 0 0 0

 1.0318 -1.7546 0.0019 H 0 0 0 0 0 0 0 0 0 0 0 0

 2.3556 -0.6811 0.5660 H 0 0 0 0 0 0 0 0 0 0 0 0

 1 4 1 0 0 0 0

 1 7 1 0 0 0 0

 1 9 1 0 0 0 0

 1 10 1 0 0 0 0

 2 3 1 0 0 0 0

 2 11 1 0 0 0 0

 2 12 1 0 0 0 0

 3 8 1 0 0 0 0

 3 13 1 0 0 0 0

 3 14 1 0 0 0 0

 4 15 1 0 0 0 0

 4 16 1 0 0 0 0

 2 7 1 0 0 0 0

 5 7 1 0 0 0 0

 4 8 1 0 0 0 0

 6 8 1 0 0 0 0

M END

$$$$

the next column. The columns following the element type are used to indicate isotope mass deviations
for a particular element and atomic charge. There are generally five or more columns that are unused
and contain only zeroes. We will get back to those later.

The bond block columns are organized in triplets indicating the two bonded atom partners beginning
with the lower index atom followed by the bond type connecting the two atoms. Bond orders are speci-
fied as expected – single bonds with ‘1’, double bonds with ‘2’, and triple bonds with ‘3’. Aromatic struc-
tures are frequently notated as alternating single and double bonds (“Kekule form”); however, aromatic
bonds can also be explicitly indicated with ‘4’ in the bond order column. The fourth column may specify
stereoscopic information.

The end of a single molecule is indicated with “M END”. Afterward, “$$$$” is used as a separator for dis-
tinct molecule entries. The “$$$$” is the primary difference between a MOL file and a V2000 SD file, as
the latter can contain multiple molecules.

For more detailed references on SD file format, check out http://c4.cabrillo.edu/404/ctfile.pdf and
http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx.
RXN files differ from SD files in a couple primary ways. Let’s look at a RXN for a 4-component split-ugi
reaction.

http://c4.cabrillo.edu/404/ctfile.pdf
http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx

$RXN

 Mrv2113 112920210930

 4 1

$MOL

 Mrv2113 11292109302D

 6 6 0 0 0 0 999 V2000

 -11.0859 0.8250 0.0000 N 0 0 0 0 0 0 0 0 0 1 0 0

 -10.3714 0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 2 0 0

 -10.3714 -0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 3 0 0

 -11.0859 -0.8250 0.0000 N 0 0 0 0 0 0 0 0 0 4 0 0

 -11.8004 -0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 5 0 0

 -11.8004 0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 6 0 0

 1 2 1 0 0 0 0

 1 6 1 0 0 0 0

 2 3 1 0 0 0 0

 3 4 1 0 0 0 0

 4 5 1 0 0 0 0

 5 6 1 0 0 0 0

M END

$MOL

 Mrv2113 11292109302D

 4 3 0 0 0 0 999 V2000

 -7.3661 -0.7145 0.0000 C 0 0 0 0 0 0 0 0 0 10 0 0

 -7.7786 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

 -7.3661 0.7145 0.0000 H 0 0 0 0 0 0 0 0 0 0 0 0

 -8.6036 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

 1 2 1 0 0 0 0

 2 3 1 0 0 0 0

 2 4 2 0 0 0 0

M END

$MOL

 Mrv2113 11292109302D

 4 3 0 0 0 0 999 V2000

 -4.3607 0.7145 0.0000 C 0 0 0 0 0 0 0 0 0 8 0 0

 -4.7732 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 9 0 0

 -4.3607 -0.7145 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

 -5.5982 -0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 7 0 0

 1 2 1 0 0 0 0

 2 3 1 0 0 0 0

 2 4 2 0 0 0 0

M END

$MOL

Notice that there is an initial block beginning with $RXN. In addition to providing some identifying infor-
mation, this block tells us that there are four reagents and one product. What follows are five blocks
designated by $MOL at the beginning and “M END” at the end. Products must follow reactants. Each of
these five blocks should look familiar – they are formatted very similarly to our SDF of piperazine. There
is one crucial difference – notice that there are non-zero values in the third column from the right in the
atoms section of each $MOL block. These values indicate the mapping of reactant atoms to product

 Mrv2113 11292109302D

 2 1 0 0 0 0 999 V2000

 -1.6500 -0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 11 0 0

 -2.4750 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 12 0 0

 1 2 3 0 0 0 0

M END

$MOL

 Mrv2113 11292109302D

 15 15 0 0 0 0 999 V2000

 3.8966 1.4438 0.0000 N 0 0 0 0 0 0 0 0 0 1 0 0

 4.6111 1.0312 0.0000 C 0 0 0 0 0 0 0 0 0 2 0 0

 4.6111 0.2062 0.0000 C 0 0 0 0 0 0 0 0 0 3 0 0

 3.8966 -0.2062 0.0000 N 0 0 0 0 0 0 0 0 0 4 0 0

 3.1821 0.2063 0.0000 C 0 0 0 0 0 0 0 0 0 5 0 0

 3.1821 1.0313 0.0000 C 0 0 0 0 0 0 0 0 0 6 0 0

 3.8966 2.2688 0.0000 C 0 0 0 0 0 0 0 0 0 9 0 0

 3.1821 2.6813 0.0000 O 0 0 0 0 0 0 0 0 0 7 0 0

 4.6111 2.6813 0.0000 C 0 0 0 0 0 0 0 0 0 8 0 0

 3.8966 -1.0312 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

 4.6111 -1.4438 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

 3.1821 -1.4437 0.0000 C 0 0 0 0 0 0 0 0 0 10 0 0

 4.6111 -2.2688 0.0000 N 0 0 0 0 0 0 0 0 0 11 0 0

 5.3256 -1.0313 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

 5.3256 -2.6813 0.0000 C 0 0 0 0 0 0 0 0 0 12 0 0

 1 2 1 0 0 0 0

 1 6 1 0 0 0 0

 2 3 1 0 0 0 0

 3 4 1 0 0 0 0

 4 5 1 0 0 0 0

 5 6 1 0 0 0 0

 1 7 1 0 0 0 0

 7 8 2 0 0 0 0

 7 9 1 0 0 0 0

 4 10 1 0 0 0 0

 10 11 1 0 0 0 0

 10 12 1 0 0 0 0

 11 13 1 0 0 0 0

 11 14 2 0 0 0 0

 13 15 1 0 0 0 0

M END

atoms and form the basis of reaction-based design using RXN files. Atoms that contain a non-zero
value in this column are referred to as “reactive atoms”.
For example, the first atom in the second $MOL, which is the second reactant in the reaction, maps to
the twelfth atom in the fifth $MOL, which is the first (and only) product in the reaction.

Figure 1. Schematic illustration of MDL RXN prepared for the split-Ugi-4C-diamine reaction. Numbers indicate atom mappings
between reactants and product.

So how do you make RXN files? You certainly do not want to manually write them in Vim (though if you
did, that would be impressive). There are a number of molecular drawing tools available freely or com-
mercially – Marvin Sketch, ChemDraw, BIOVIA Draw, etc. Personally, I use Marvin Sketch, which is li-
censed by ChemAxon, but you are free to use whatever suits your needs.

Finally, notice that in the current reaction we do not have any aromatic rings. It is critical that if we do
have aromatic rings in our reaction that we explicitly create the reaction file with aromatic bond order
(‘4’) for the corresponding bonds.

Figure 2. Comparison of Kekule- and aromatic-form benzene ring. Use the aromatic form when preparing MDL RXN files for
the BCL.

This is not the case for our SD files, so please take care to prepare the files correctly.

For Part 2 we are going to use a variant of this reaction in which the second reactant is a formaldehyde.
Can you create a reaction file that encodes the reaction above with a formaldehyde in place of the acet-
aldehyde? (If you do not have a readily-available molecular drawing software package, no worries – we
have prepared one for you).

Part 2: Introduction to reaction-based design applications in the BCL

The primary application that we will use is called molecule:React. The main syntax is as follows:

The starting_fragments option is mandatory. In principle, we could supply a single file full of rea-
gents and match all the reactant pairs to the RXN file and then perform all of the reactions. Indeed, this
latter effect can be achieved either by passing the same file to both starting_fragments and re-
agents, or if it is a 2-component reaction by passing one set of reactants as the starting_fragments

and the other as the reagents. However, usually we want to do something more targeted (i.e., we have a
few scaffolds that are functionalized, and we want to modify them through different reaction/reactant
combinations).

There are two benefits to having a separate flag for starting_fragments vs. supplying everything
in reagents. First, we already mentioned it allows increased control over how reactants are com-

bined. Note that neither starting_fragments nor reagents are required to indicate correspond
to any specific position of the reactants in the reaction (i.e., starting_fragments could contain

fragments that are in either the first and/or second reactant positions). Second, the start-
ing_fragments flag allows us to specify which substructure’s coordinate information we try to pre-
serve.

The reactions flag specifies which directory contains our RXN files. This flag takes a directory path, not a
file. If nothing is specified, it will default to a few predefined reactions in bcl/rotamer_li-

brary/functional_reactions/. It will signal the application to parse any files ending in “.rxn”.

The routine flag currently accepts one of two options: Random or Exhaustive. In both cases, the

application will identify all possible valid reactions given the provided starting_fragments, rea-
gents, and reactions. If routine is Random, then only one random reaction will be executed and

the products output to output_filename. If the routine is Exhaustive, then all valid reactions
will be executed and the products output to output_filename.

Subsection 2A – 2-component reactions

Before we jump into a 4-component reaction, let’s start with a few simpler reactions and the different
applications that are available for reaction-based design in the BCL.

The first reaction we will look at is a classic 2-component Buchwald-Hartwig coupling:

bcl.exe molecule:React \

-starting_fragments <primary reactant> \

-reagents <pool of reagents> \

-reactions <reaction directory> \

-routine <Random/Exhaustive>

-output_filename <file in which to write output>

Figure 3. Schematic illustration of MDL RXN prepared for the Buchwald-Hartwig 2C reaction. Numbers indicate atom map-
pings between reactants and product. Note that the aromaticity of the rings is explicitly shown.

Let’s do an example to make these ideas clearer. As our primary reactant, we will extract the amide-
linked core rings of the targeted therapeutic imatinib, which is a tyrosine kinase inhibitor that preferen-
tially inhibits Abl, c-Kit, and PDGFR. Please note that the following does not reflect the actual synthetic
route used for the creation of imatinib and is just for illustrative purposes.

We will modify the scaffold by brominating the pyrimidine such that it matches the first reactant in the
RXN file.
<image>

We will then try reacting it with a series of previously prepared amines.

What does your output look like? Did the reaction work as you expected? Here is what I got:

<image>

There are several more reagent files in the same directory. Try the same reaction again but with a differ-
ent reagent pool. After you do that, try passing one of the amine reagents files as the start-
ing_fragments and pass the “imatinib_core.br.sdf” file as reagents. How did this change your

output?

As you will also see when we begin alchemical design in Tutorial 5, it is a theme in the BCL molecule mu-
tate classes that we try to preserve pose information as we perturb molecules. Due to implementation
differences between the different strategies for mutation, however, the way in which we achieve this
effect differs between reaction- and alchemical-based design. At times, the time cost of preserving this
information is not worth it.

Let’s run the same design again, but this time let’s pass the ligand_based flag.

bcl.exe molecule:React \

-starting_fragments input/2c/buchald-hartwig/imatinib_core.br.sdf \

-reagents input/2c/buchald-hartwig/aryl_amine.fluorinated.sdf \

-output_filename output/imatinib_core.buchald-hartwig.2.sdf \

-reactions input/2c/buchald-hartwig/rxns/ \

-routine Exhaustive

Compare “output/imatinib_core.buchald-hartwig.2.lb.sdf” and “output/imatinib_core.buchald-hart-
wig.2.sdf”. Note that the latter perfectly preserves the coordinate information of the atoms in “in-
put/2c/buchald-hartwig/imatinib_core.br.sdf” (sans the Br), while the former does not. You may also
notice that the ligand_based flag makes the simulation faster. How much faster is it to do the calculation
with the ligand_based flag enabled?

The ligand_based flag more or less takes the raw output from the reaction atom mapping process

and runs BCL::Conf to generate a 3D conformer. The options for BCL::Conf can be controlled with the
sample_confs flag.

There is another 2-component reaction in the “BCL_Workshop_2022/Tutorial_4/input/2c” directory
called the Ullmann-type reaction. There is also a different version of the imatinib scaffold and reagent
files. Before you run the reaction, look at the RXN file and visualize the reactants with PyMOL. What are
all the ways in which this reaction is going to yield different products than the previous reaction? Do you
think you will get fewer or more total products from running the Exhaustive routine?

After you think about the questions, run the reaction with the different reagent sets. Were you correct?
Do you understand the output?

One side note – There is an additional way in which we can perform 2-component reactions. In Tutorial 7
Part 4 we will demonstrate how to use the AddMedChem alchemical mutate in the molecule:Mu-
tate application to mimic common 2-component coupling reactions that you may find in on-demand

synthesis libraries.

When you’re ready, move on to the subsection on 3-component reactions.

Subsection 2B – 3-component reactions

Performing 3-component reactions does not differ substantially from performing 2-component reac-
tions. The primary challenge is related to 3D conformer generation – it can be more difficult to preserve
exact coordinate information of a starting_fragment in complicated products. In cases where this

is not possible, we do our best to retain a conformer near the starting_fragment pose that al-
lows a reasonable geometry to be obtained.

For our test case, let’s pretend that we are building a covalent inhibitor using an Ugi Tetrazole reaction
like the one demonstrated in Sutanto et al. 2021 (https://pubmed.ncbi.nlm.nih.gov/33536213/). Techni-
cally, this is a 4-component reaction, but because TMS-N3 is never substituted to derivatize the product
we can take its contribution to our product for granted and not worry about mapping. That leave 3-com-
ponents in our RXN file:

bcl.exe molecule:React \

-starting_fragments input/2c/buchald-hartwig/imatinib_core.br.sdf \

-reagents input/2c/buchald-hartwig/aryl_amine.fluorinated.sdf \

-output_filename output/imatinib_core.buchald-hartwig.2.lb.sdf \

-reactions input/2c/buchald-hartwig/rxns/ \

-ligand_based \

-routine Exhaustive

https://pubmed.ncbi.nlm.nih.gov/33536213/

Figure 4. Schematic illustration of MDL RXN prepared for the Ugi-tetrazole 3C reaction. Numbers indicate atom mappings be-
tween reactants and product. Note that technically this is a 4-component reaction, but we formulated it as a 3-component re-
action because one of the reactants has atoms that do not map to any reactant that we can modify in our reagent pool.

Note that the isonitrile in the third reactant position is written in the neutral resonance state rather than
the zwitterion resonance state because the BCL does not currently contain an atom type for carbanions
(this is also on the list of things to add). This is a complicated product that introduces a stereocenter.

When doing structure-based covalent inhibitor design, we usually want to keep the geometry of the co-
valent warhead fixed. This is because we want the remainder of the non-covalent portion of the mole-
cule to be designed to both reversibly bind the pocket and stabilize the orientation of the warhead
needed to form the covalent adduct. It defeats the purpose of having a covalent warhead if the remain-
der of the molecule binds in such a way that we cannot form a covalent bond with the receptor.
Let’s give it a whirl. We will use an acrylamide as our starting_fragment, which is a common cova-

lent warhead. I have selected a random ketone and isonitrile with which to react the acrylamide.

Run the following:

How did it go? If your run was anything like mine, this was unsuccessful. Lame. Why was it unsuccessful?
Does this mean the reaction product cannot be made? Let’s look at some of the output messages from
the run. My terminal looks like this:

bcl.exe molecule:React \

-starting_fragments acrylamide_amine.sdf \

-reagents all_no_acryl.sdf \

-reactions rxn/ \

-output_filename product.sdf \

-routine Random

Hmm… It says, “Molecule cleaning failed to generate a valid 3D conformer!”. The important thing to
note is that the “Has good geometry” line returns “false”, which also causes the final “Returning null…”
line. This tells me that the product had a very poor 3D conformer.

There are some more lines that may be helpful. It says up above that “Fix bad geometry” and “Fix bad
ring geometry” both are false. These are command-line options that are enabled during pose-sensitive
reaction-based design. Typically, the only dihedrals that can be sampled during 3D conformer genera-
tion in reaction-based design are those that are not in the starting_fragment. We can extend this selec-
tion to include atoms with bad geometry. We can further extend this selection to include up to six adja-
cent atoms from any atom not in the starting fragment, which can help with tricky connection points.

Let’s try it out and see if it helps.

Any luck? None for me, I am afraid. The combination of reagents we chose and the reaction in question
is stretching the limits of our pose retention capabilities at this time. In situations like this, the code in
place to try and preserve 3D coordinate information during a tricky design is preventing us from getting
a good 3D conformer at all. So, the best thing to do at this point is wholesale it and build the molecule
from scratch. How do we do that? We pass the ligand_based flag and specify a sample_confs
object with generate_3D enabled.

<skipping a few lines>

=std=bcl::chemistry=> Done associating reactants with reactions

=std=bcl::app=> Setting pose-dependent options

=std=bcl::app=> Ligand-based: false

=std=bcl::app=> Fix bad geometry: false

=std=bcl::app=> Fix bad ring geometry: false

=std=bcl::app=> Extend adjacent atoms: 0

=std=bcl::app=> Performing a random reaction!

=std=bcl::chemistry=> Skipping drug-likeness filter!

=std=bcl::chemistry=> Skipping drug-likeness filter!

=std=bcl::chemistry=> Getting atom indices for conformer sampling...

=std=bcl::chemistry=> Generating single conformer

=std=bcl::chemistry=> Molecule cleaning failed to generate a valid 3D

conformer!

=std=bcl::chemistry=> Defined: true

=std=bcl::chemistry=> Has good geometry: false

=std=bcl::chemistry=> Final molecule size: 24

=std=bcl::chemistry=> Returning null...

=std=bcl::util=> Reactions has run for 0.00212 seconds

bcl.exe molecule:React \

-starting_fragments acrylamide_amine.sdf \

-reagents all_no_acryl.sdf \

-reactions rxn/ \

-output_filename product.sdf \

-routine Random \

-fix_geometry -fix_ring_geometry -extend_adjacent_atoms 4

Ah, and this time we have a successful reaction with a valid 3D conformer. But you may say, “Ben, that’s
swell and all, but I really need to keep that acrylamide really close to where it was at. This is not going to
work for me.” I hear you. I feel similarly. We have a few options.

First, you can do a standard rigid substructure-based alignment back to the acrylamide.

This looks okay-ish…

Figure 5. Covalent inhibitor product rigidly aligned via partial substructure matching of the acrylamide warhead. Orange is
the starting acrylamide reactant. Green is the product.

But not good enough.

We could alternatively generate an ensemble of conformers, align all of them to the acrylamide, and
then choose the one that aligns closest. This would be doable in a few commands using mole-

cule:ConformerGenerator followed by molecule:AlignToScaffold and then mole-
cule:Properties. That sounds like something that should its own application.

Indeed, there is an app in-development right now undergoing some alpha testing that is meant to allow
users to assemble combination of different alignment methods, pose scoring tools, etc. under one um-
brella app. The app is called cheminfo:MoleculeFit, and you may remember it from Tutorial 1. It

bcl.exe molecule:React \

-starting_fragments acrylamide_amine.sdf \

-reagents all_no_acryl.sdf \

-reactions rxn/ \

-output_filename product.sdf \

-routine Random \

-sample_confs \ "(conformation_comparer=SymmetryRMSD,tolerance=0.25,\

cluster=1,generate_3D=1,\

max_iterations=2000,max_conformations=1,\

change_chirality=0)" \

-ligand_based

bcl.exe molecule:AlignToScaffold \

acrylamide_amine.sdf \

product.sdf \

product.ats.sdf

does not, unfortunately, currently restrict the SampleByParts atoms; however, we can do this in a two-
step process.

First, let’s add some info the MDL SDF to indicate that we only want to allow sampling of dihedral angles
in the acrylamide atoms of our new product molecule.

Our output SDF contains the following property block at the end of the file:

These values correspond to the acrylamide heavy atoms in our molecule. You can check yourself, too, by
visualizing in PyMOL.

Now when we generate conformers for product.labeled.sdf, no matter whether it is via the command
line with molecule:ConformerGenerator or if it is in some other application, only the dihedrals
containing the specified atoms will be sampled.

Second, let’s perform the flexible alignment.

And now we can see that we have a valid 3D conformer that aligns the acrylamide back to its original
pose.

bcl.exe molecule:SetSampleByPartsAtoms \

-input_filenames product.sdf \

-atom_comparison_type ElementType \

-bond_comparison_type BondOrderOrAromatic \

-reference_mol acrylamide_amine.sdf \

-disable_complement_indices \

-output product.labeled.sdf

> <SampleByParts>

11 12 13 14 15 16 17 2 3

bcl.exe cheminfo:MoleculeFit \

-input_filenames product.labeled.sdf \

-output_filename product.fit.sdf \

-scaffold_fragments acrylamide_amine.sdf \

-routine 2 \

-sample_confs "(conformation_comparer=SymmetryRMSD,tolerance=0.125,\

generate_3D=0,cluster=true,max_iterations=2000,\

max_conformations=1000,change_chirality=0)" \

-add_h \

-refine_alignment \

-bond_comparison_type BondOrderAmideOrAromaticWithRingness

Figure 6. Covalent inhibitor product flexibly aligned via partial substructure matching of the acrylamide warhead. Orange is
the starting acrylamide reactant. Blue is the product. Subsection 2C: Designing a library of piperazine core molecules with a
split-Ugi 4-component reaction

Subsection 2C: Designing a library of piperazine core molecules with a split-Ugi 4-component reaction

Piperazine is a common molecular scaffold, often considered a “privileged substructure” because of its
relatively high frequency in bioactive compounds. It is well-established that piperazine derivatives are
effective scaffolds for orthosteric dopamine receptor antagonists1. There are, however, millions of ways
in which a piperazine scaffold can be derivatized. Here, we will use a split-Ugi diamine 4-component re-
action.

By this point you are familiar with the molecule:React app, so let’s use a different one. There is an
application called molecule:Mutate that can perform many perturbations to a molecule.

You will see under the implementation flag several choices. These largely represent the mutates that we
can perform in the alchemical drug design framework. We will explore these in detail in Tutorials 5 – 7.
For now, I just want you to notice that one of the available implementations is React. This is more or

less a mini version of the molecule:React app that meets the qualifications to derive from Frag-
mentMutateInterface. This is important because FragmentMutateInterface is the primary
drug design interface class between BCL and Rosetta (for right now).

We can pilot molecule:Mutate with a simple case where we have one reactant that matches each
potential position in the split-Ugi reaction (Figure 1).

Run the following:

bcl.exe molecule:Mutate –help

bcl.exe molecule:Mutate \

-input_filenames piperazine.sdf \

-output product.sdf \

-implementation "React(reactions_directory=rxns/, \

reagents=demo_reagents.sdf, ligand_based=0, \

fix_geometry=1, extend_adjacent_atoms=4)"

Did we obtain a product? Hopefully the answer is yes. Visualize the resultant product and the piperazine
starting fragment in PyMOL. How did we do? Does the piperazine core of our new molecule retain the
coordinate information of the starting_fragment? If not, it should at least be close.

One caveat to molecule:Mutate is that it can only return a single molecule from a single product.

This is fine for stochastic sampling – we can just run the mutate a bunch of times with different random
seeds – but it is not ideal for enumeration. So, for now, let’s go back to molecule:React.

Let’s extract a subset of reagents from the larger set:

Add in our formaldehyde:

And then let’s run the reaction. You can run it retaining pose information:

Or you can run it in generating a random conformer:

The latter generates about one product molecule every second while the former requires ~4 – 6 seconds
per product molecule. This procedure will generate 49 molecules in ligand_based mode, and I be-
lieve only a couple fail in pose-dependent mode.

bcl.exe molecule:Reorder \

-input_filenames reagents_le_20.sdf \

-randomize \

-output_max 50 \

-output reagents_le_20.rand_50.sdf

cat formaldehyde.sdf reagents_le_20.rand_50.sdf > reagents.demo.sdf

bcl.exe molecule:React \

-starting_fragments piperazine.noh.sdf \

-reagents reagents.demo.sdf \

-output_filename product.sdf \

-reactions rxns/ \

-routine Exhaustive \

-fix_geometry -fix_ring_geometry -extend_adjacent_atoms 4

bcl.exe molecule:React \

-starting_fragments piperazine.noh.sdf \

-reagents reagents.demo.sdf \

-output_filename product.sdf \

-reactions rxns/ \

-routine Exhaustive \

-ligand_based -sample_confs

"(conformation_comparer=SymmetryRMSD,tolerance=0.25,\

generate_3D=1,cluster=true,max_iterations=1000,\

max_conformations=1,change_chirality=0)"

Once you have your small ensemble, try to answer the following questions using BCL cheminformatics
tools we reviewed in Tutorials 1 – 3:

1. How many of our product molecules violate Lipinski’s Rules? How many violate Veber’s rules?

2. Generate statistics on the following properties: number of hydrogen bond donors, number of
hydrogen bond acceptors, number of rotatable bonds, topological polar surface area, logP, and
synthetic accessibility. How many of the molecules have fewer than 5 HBD, fewer than 10 HBA,
fewer than 10 rotatable bonds, a TPSA below 140, a clogP between 0 and 3, and a synthetic ac-
cessibility score below 4?

3. Using the QSAR model we built earlier for DRD4, estimate localPPV values for the design. Which

design has the highest localPPV?

4. Using the equation below and the BCL descriptor framework, write a property to estimate rela-
tive selectivity of each design for DRD4 relative to the other dopamine receptors.

Congratulations! You have finished Tutorial 4.

