Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

Structure Preparation

Marion Sauer

Vanderbilt University

Rosetta Workshop May 9, 2018

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

2 Rosetta Minimization

3 Rosetta Relax

Adding Minimization or Relax Constraints

Summary

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

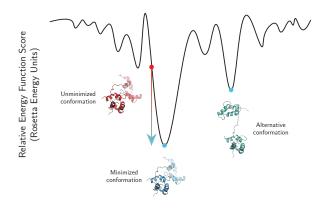
Getting Started

For starters, remove waters, non-canonical amino acids, ligands, or anything else not defined as an "ATOM" or "TER" type in a PDB file.

python clean_pdb.py <pdb> <chain ID>

Note: script may or may not remove selenomethionines (depending on script version) and removes residues with zero occupancy.

Work around


-ingore_unrecognized_res allows you to keep "HETATOM"
types and waters
-ignore_zero_occupancy false loads residues/atoms that have

zero occupancy

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

Rosetta Minimization

Goal

Identify a structure's conformation representative of the nearest local energy minimum using the Rosetta energy score function given the starting conformation and associated energy.

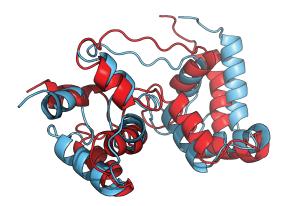


Figure: Minimization alters the input backbone conformation, sometimes dramatically

Getting Started O	Rosetta Minimization	Rosetta Relax O	Constraints 00	Summary O	Questions
Impacts o	f minimization	on design			

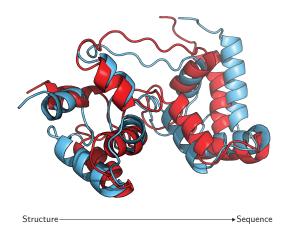
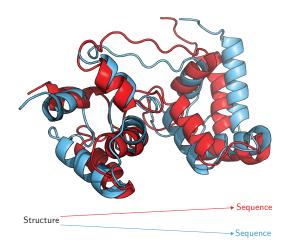
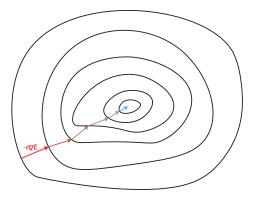


Figure: Design relies on the backbone coordinates/dihedral angles to predict favorable sidechain placement

Getting Started O	Rosetta Minimization	Rosetta Relax O	Constraints 00	Summary O	Questions
Impacts o	f minimization	on design			




Figure: Altering the template backbone can, and most likely will, alter the predicted sequence tolerance of designs

Getting Started 0	Rosetta Minimization	Rosetta Relax O	Constraints 00	Summary O	Questions
Gradient-	descent minim	ization			

Calculate the overall gradient vector ∇E to get

$$\nabla E = \frac{dE}{dx_1}, \frac{dE}{dx_2}, \dots \frac{dE}{dx_N}$$

where $x_1...x_N$ are the movable degrees of freedom

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions
0	○○○○○●○	O	00	O	
Minimiza	tion in practice)			

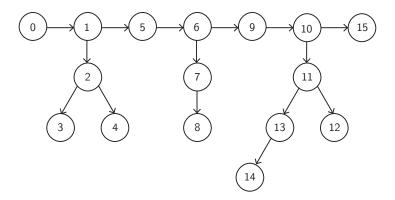


Figure: Minimization follows an order of hierarchy defined by the Rosetta foldtree. The degrees of freedom are defined by whether you use torsion space (dihedral angles), cartesian space (atom coordinates), or dualspace (a combination of the two). Users may control what degrees of freedom are allowed to change with a movemap. Getting Started No. Constraints Summary Questions of minimization Started Star

Rosetta minimization is based off the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

- default: lbfgs_armijo_nonmonotone best performance for large proteins
- small systems (*e.g.* small peptides): dfpmin_armijo_nonmonotone
- debugging: linmin_iterated very slow but more accurate

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

Rosetta Relax

Getting Started Rosetta Relax Rosetta Minimization Constraints Summary Questions

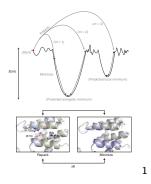


Figure: FastRelax modes work by running sidechain repack and minimization cycles, ramping up or down the fa_rep weight of the forcefield.

repeat 5 ramp_repack_min 0.020 0.01 ramp repack min 0.250 0.01 ramp_repack_min 0.550 0.01 0.00001 ramp repack min 1 accept_to_best endrepeat

Parameters may be changed, but with extreme caution

¹Combs, S.A., DeLuca, S.L., DeLuca, S.H., Lemmon, G.H., Nannemann, D.P., Nguyen, E.D., Willis, J.R., Sheehan, J.H., Meiler, J. (2013) Small-molecule ligand docking into comparative models in Rosetta. DOI: 10.1038/nprot.2013.074

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

Adding Minimization or Relax Constraints

Getting Started O	Rosetta Minimization	Rosetta Relax O	Constraints ●0	Summary O	Questions
Relax wit	h all-heavy-ato	om constra	ints		

How do you know if FastRelax moved the backbone too excessively?

- -constrain_relax_to_start_coords discourages backbone movement away from starting coordinates by adding backbone coordinate constraints
- -relax:constrain_relax_to_native_coords uses model passed to -in:file:native for backbone coordinate contraints
- -relax:coord_constrain_sidechains also adds side chain coordinate constraints; requires one of the two previous flags
- -constraints:cst_fa_file your_structure_cs.cst add custom constraints
- -relax:script

Rosetta/main/source/src/apps/public/relax_w_allatom_cst/ always_constrained_relax_script - forces constraints to stay on during the entire run

Getting Started O	Rosetta Minimization	Rosetta Relax O	Constraints ○●	Summary O	Questions
Creating a	movemap to	restrict m	ovement		

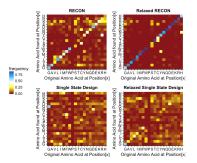
Each line in a movemap file identifies a jump, residue or residue range, and the allowed degrees of freedom as follows:

For example,

 RESIDUE 28
 BB
 # allows backbone movements at residue 28

 RESIDUE 32
 48
 BBCHI
 # allows backbone and sidechain chi movements from residues 32 - 48

 JUMP 1
 YES
 # allows rigid-body movents between the structures separated by jump 1


Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

Summary

Minimization benchmarks show that the energy differences result from improvements in the fa_dun and fa_atr terms

- Resolution of starting template is important - lower template resolution results in greater sampling away from the native sequence
- Greater minimization/relaxation results in more conservative design sampling
- Idealizing the starting template for the Rosetta scoring function introduces sampling bias

Getting Started	Rosetta Minimization	Rosetta Relax	Constraints	Summary	Questions

Questions